一、蒙特卡罗模拟介绍
蒙特卡罗模拟(Monte Carlo Simulation)是一种基于随机采样的数值计算方法,用于解决具有不确定性或复杂概率分布的问题。其核心思想是通过多次随机抽样来逼近系统的行为或目标函数的真实值,进而对系统进行评估、预测或优化。蒙特卡罗模拟被广泛应用于金融、工程、物理科学、计算机科学等领域,尤其是在无法通过解析方法直接求解问题时。
(一)背景知识
1945年,在第二次世界大战即将结束之际,一场看似简单的纸牌游戏引发了计算领域的重大突破。这项突破最终导致了蒙特卡洛方法的诞生。参与曼哈顿计划的科学家斯坦尼斯劳·乌拉姆在康复期间深入思考了纸牌游戏中的概率问题。他意识到通过反复模拟,可以有效地近似复杂的概率问题。随后乌拉姆与同事约翰·冯·诺依曼讨论了这一想法,共同奠定了蒙特卡洛方法的理论基础。该方法的命名灵感来自摩纳哥著名的蒙特卡洛赌场,象征着其处理高风险和不确定性的特性。
(二) 蒙特卡罗模拟的优缺点
(1)优点
◾ 适应性强:蒙特卡罗模拟适用于各种复杂问题,特别是在存在不确定性和随机性的系统中。
◾ 直观