常见的混沌映射汇总

本文汇总了常见的混沌映射,包括Chebyshev map、Circle map、Gauss/mouse map等14种,并提供了详细的迭代公式。这些映射在数学和算法研究中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chaotic maps

1. Chebyshev map

x k + 1 = c o s ( k c o s − 1 ( x k ) ) x_{k+1}=cos(kcos^{-1}(x_k)) xk+1=cos(kcos1(xk))

2. Circle map

x k + 1 = x k + b − ( a 2 π ) s i n ( 2 π x k ) ) m o d ( 1 ) a = 0.5 b = 0.2 x_{k+1}=x_k+b-(\frac{a}{2\pi})sin(2\pi x_k))mod(1)\\a=0.5 \\b=0.2 xk+1=xk+b(2πa)sin(2πxk))mod(1)a=0.5b=0.2

3. Gauss/mouse map

x k + 1 = { 0 x k = 0   1 x k m o d ( 1 ) o t h e r w i s e 1 x k m o d ( 1 ) = 1 x k − [ 1 x k ] x_{k+1} = \begin{cases} 0 & x_k = 0 \\\ \frac{1}{x_kmod(1)} & otherwise\end{cases}\\\frac{1}{x_kmod(1)}=\frac{1}{x_k}-[\frac{1}{x_k}] xk+1={0 xkmod(1)1xk=0otherwisexkmod(1)1=xk1[xk1]

4. Intermittency map

x k + 1 = { ε + x k + c x k n 0 < x k ≤ P   x k − P 1 − P P < x k < 1 x_{k+1} = \begin{cases} \varepsilon+x_k+cx_k^n & 0<x_k \leq P \\\ \frac{x_k-P}{1-P} & P<x_k<1\end{cases} xk+1={ε+xk+cxkn 1PxkP0<xkPP<xk<1

5. Iterative map

x k + 1 = s i n ( a π x k ) a ∈ ( 0 , 1 ) x_k+1=sin(\frac{a\pi}{x_k})\\a\in(0,1) xk+1=sin(xk)a(0,1)

6. Liebovitch map

x k + 1 = { α x k 0 < x k ≤ P 1   P − x k P 2 − P 1 P 1 < x k ≤ P 2 1 − β ( 1 − x k ) P 2 < x k ≤ 1 α < β , 并且 α = P 2 P 1 ( 1 − ( P 2 − P 1 ) ) β = 1 P 2 − 1 ( ( P 2 − 1 ) − P 1 ( P 2 − P 1 ) ) x_{k+1} = \begin{cases} \alpha x_k & 0<x_k \leq P_1 \\\ \frac{P-x_k}{P_2-P_1} & P_1<x_k\leq P_2\\1-\beta(1-x_k) &P_2<x_k\leq1\end{cases}\\\alpha<\beta,并且\\\alpha=\frac{P_2}{P_1}(1-(P_2-P_1))\\\beta=\frac{1}{P_2-1}((P_2-1)-P_1(P_2-P_1)) xk+1= αxk P2P1Pxk1β(1xk)0<xkP1P1<xkP2P2<xk1α<β,并且α=P1P2(1(P2P1))β=P211((P21)P1(P2P1))

7. Logistic map

x k + 1 = a x k ( 1 − x k ) x k 是第 k 个混沌数, k 为迭代次数, x ∈ ( 0 , 1 ) , x 0 ∉ ( 0 , 0.25 , 0.5 , 0.75 , 1 ) , a 为实数 ( a = 4 ) x_{k+1}=ax_k(1-x_k)\\x_k是第k个混沌数,k为迭代次数,x\in(0,1),x_0\notin(0,0.25,0.5,0.75,1),a为实数(a=4) xk+1=axk(1xk)xk是第k个混沌数,k为迭代次数,x(0,1),x0/(0,0.25,0.5,0.75,1),a为实数(a=4)

8. Piecewise map

x k + 1 = { x k P 0 ≤ x k < P x k − P 0.5 − P P ≤ x k < 1 2 1 − P − x k 0.5 − P 1 2 ≤ x k < 1 − P 1 − x k P 1 − P ≤ x k < 1 P ∈ ( 0 , 1 ) 为控制参数, x ∈ ( 0 , 1 ) x_{k+1} = \begin{cases} \frac{x_k}{P} & 0\leq x_k < P \\\frac{x_k-P}{0.5-P} & P\leq x_k<\frac{1}{2}\\\frac{1-P-x_k}{0.5-P} & \frac{1}{2}\leq x_k < 1-P \\\frac{1-x_k}{P} & 1-P \leq x_k <1\end{cases} \\P \in (0,1)为控制参数,x \in (0,1) xk+1= Pxk0.5PxkP0.5P1PxkP1xk0xk<PPxk<2121xk<1P1Pxk<1P(0,1)为控制参数,x(0,1)

9. Sine map

x k + 1 = a 4 s i n ( π x k ) , a ∈ ( 0 , 4 ] x_{k+1}=\frac{a}{4}sin(\pi x_k), \\a\in (0,4] xk+1=4asin(πxk),a(0,4]

10. Singer map

x k + 1 = μ ( 7.86 x k − 23.31 x k 2 + 28.75 x k 3 − 13.302875 x k 4 ) μ ∈ ( 0.9 , 1.08 ) x_{k+1}= \mu (7.86x_k- 23.31 x_k^2 + 28.75 x_k^3- 13.302875 x_k^4)\\\mu \in (0.9,1.08) xk+1=μ(7.86xk23.31xk2+28.75xk313.302875xk4)μ(0.9,1.08)

11. Sinusoidal map

x k + 1 = a x k 2 s i n ( π x k ) a = 2.3 , x 0 = 0.7 时有简化形式: x k + 1 = s i n ( π x k ) x_{k+1}=a x_k^2 sin(\pi x_k)\\a=2.3,x_0=0.7 时有简化形式:\\x_{k+1} = sin(\pi x_k) xk+1=axk2sin(πxk)a=2.3,x0=0.7时有简化形式:xk+1=sin(πxk)

12. Tent map

The tent map is very similar to the logistic map.
x k + 1 = { x k α x k < α ( 1 − x k ) 1 − α x k ≥ α     α ∈ ( 0 , 1 ) x_{k+1} = \begin{cases} \frac{x_k}{\alpha} &x_k<\alpha \\ \frac{(1 - x_k)}{1-\alpha} & x_k \geq \alpha \end{cases} \ \ \ \alpha \in (0,1) xk+1={αxk1α(1xk)xk<αxkα   α(0,1)

13.β-chaotic

x t + 1 = k β ( x t ; μ ; v ; x 1 ; x 2 ) β ( x t ; μ ; v ; x 1 ; x 2 ) = { ( x − x 1 x c − x 1 ) μ ( x 2 − x x 2 − x c ) v i f   x ∈ [ x 1 , x 2 ] 0 o t h e r w i s e β ( x t ; μ ; v ; x 1 ; x 2 ) ∈ R , x 1 < x 2 . x c = μ x 2 + v x 1 μ + v μ = b 1 + c 1 × a , v = b 2 + c 2 × a b i , c i 为实数例: a = [ − 0.8 : 0.7 ] , x = − 10 , x = 11 , k = 0.85 , b = 51 , c = 11 , b = 32 a n d c = − 12 x_{t+1}=k\beta(x_t ; \mu ; v ; x_1 ; x_2)\\ \beta(x_t ; \mu ; v ; x_1 ; x_2)=\begin{cases} (\frac{x-x_1}{x_c - x_1})^ \mu (\frac{x_2 - x}{x_2 - x_c})^v & if \ x \in[x_1,x_2] \\ 0 & otherwise \end{cases}\\ \beta(x_t ; \mu ; v ; x_1 ; x_2) \in R, x_1<x_2.\\ x_c=\frac{\mu x_2 + v x_1}{\mu + v}\\ \mu = b_1 + c_1 \times a,v=b_2 + c_2 \times a\\ b_i,c_i为实数 例: a=[−0.8:0.7], x =− 10 , x = 1 1 , k=0.85, b = 5 1 , c = 1 1 , b = 3 2 and c =− 12 xt+1=kβ(xt;μ;v;x1;x2)β(xt;μ;v;x1;x2)={(xcx1xx1)μ(x2xcx2x)v0if x[x1,x2]otherwiseβ(xt;μ;v;x1;x2)R,x1<x2.xc=μ+vμx2+vx1μ=b1+c1×a,v=b2+c2×abi,ci为实数例:a=[0.8:0.7],x=10,x=11,k=0.85,b=51,c=11,b=32andc=12

14. Cubic map

x k + 1 = ρ ( 1 − x k 2 ) ρ 为控制参数 x_{k+1}= \rho(1-x_k^2)\\\rho为控制参数 xk+1=ρ(1xk2)ρ为控制参数

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值