Chaotic maps
1. Chebyshev map
x k + 1 = c o s ( k c o s − 1 ( x k ) ) x_{k+1}=cos(kcos^{-1}(x_k)) xk+1=cos(kcos−1(xk))
2. Circle map
x k + 1 = x k + b − ( a 2 π ) s i n ( 2 π x k ) ) m o d ( 1 ) a = 0.5 b = 0.2 x_{k+1}=x_k+b-(\frac{a}{2\pi})sin(2\pi x_k))mod(1)\\a=0.5 \\b=0.2 xk+1=xk+b−(2πa)sin(2πxk))mod(1)a=0.5b=0.2
3. Gauss/mouse map
x k + 1 = { 0 x k = 0 1 x k m o d ( 1 ) o t h e r w i s e 1 x k m o d ( 1 ) = 1 x k − [ 1 x k ] x_{k+1} = \begin{cases} 0 & x_k = 0 \\\ \frac{1}{x_kmod(1)} & otherwise\end{cases}\\\frac{1}{x_kmod(1)}=\frac{1}{x_k}-[\frac{1}{x_k}] xk+1={0 xkmod(1)1xk=0otherwisexkmod(1)1=xk1−[xk1]
4. Intermittency map
x k + 1 = { ε + x k + c x k n 0 < x k ≤ P x k − P 1 − P P < x k < 1 x_{k+1} = \begin{cases} \varepsilon+x_k+cx_k^n & 0<x_k \leq P \\\ \frac{x_k-P}{1-P} & P<x_k<1\end{cases} xk+1={ε+xk+cxkn 1−Pxk−P0<xk≤PP<xk<1
5. Iterative map
x k + 1 = s i n ( a π x k ) a ∈ ( 0 , 1 ) x_k+1=sin(\frac{a\pi}{x_k})\\a\in(0,1) xk+1=sin(xkaπ)a∈(0,1)
6. Liebovitch map
x k + 1 = { α x k 0 < x k ≤ P 1 P − x k P 2 − P 1 P 1 < x k ≤ P 2 1 − β ( 1 − x k ) P 2 < x k ≤ 1 α < β , 并且 α = P 2 P 1 ( 1 − ( P 2 − P 1 ) ) β = 1 P 2 − 1 ( ( P 2 − 1 ) − P 1 ( P 2 − P 1 ) ) x_{k+1} = \begin{cases} \alpha x_k & 0<x_k \leq P_1 \\\ \frac{P-x_k}{P_2-P_1} & P_1<x_k\leq P_2\\1-\beta(1-x_k) &P_2<x_k\leq1\end{cases}\\\alpha<\beta,并且\\\alpha=\frac{P_2}{P_1}(1-(P_2-P_1))\\\beta=\frac{1}{P_2-1}((P_2-1)-P_1(P_2-P_1)) xk+1=⎩ ⎨ ⎧αxk P2−P1P−xk1−β(1−xk)0<xk≤P1P1<xk≤P2P2<xk≤1α<β,并且α=P1P2(1−(P2−P1))β=P2−11((P2−1)−P1(P2−P1))
7. Logistic map
x k + 1 = a x k ( 1 − x k ) x k 是第 k 个混沌数, k 为迭代次数, x ∈ ( 0 , 1 ) , x 0 ∉ ( 0 , 0.25 , 0.5 , 0.75 , 1 ) , a 为实数 ( a = 4 ) x_{k+1}=ax_k(1-x_k)\\x_k是第k个混沌数,k为迭代次数,x\in(0,1),x_0\notin(0,0.25,0.5,0.75,1),a为实数(a=4) xk+1=axk(1−xk)xk是第k个混沌数,k为迭代次数,x∈(0,1),x0∈/(0,0.25,0.5,0.75,1),a为实数(a=4)
8. Piecewise map
x k + 1 = { x k P 0 ≤ x k < P x k − P 0.5 − P P ≤ x k < 1 2 1 − P − x k 0.5 − P 1 2 ≤ x k < 1 − P 1 − x k P 1 − P ≤ x k < 1 P ∈ ( 0 , 1 ) 为控制参数, x ∈ ( 0 , 1 ) x_{k+1} = \begin{cases} \frac{x_k}{P} & 0\leq x_k < P \\\frac{x_k-P}{0.5-P} & P\leq x_k<\frac{1}{2}\\\frac{1-P-x_k}{0.5-P} & \frac{1}{2}\leq x_k < 1-P \\\frac{1-x_k}{P} & 1-P \leq x_k <1\end{cases} \\P \in (0,1)为控制参数,x \in (0,1) xk+1=⎩ ⎨ ⎧Pxk0.5−Pxk−P0.5−P1−P−xkP1−xk0≤xk<PP≤xk<2121≤xk<1−P1−P≤xk<1P∈(0,1)为控制参数,x∈(0,1)
9. Sine map
x k + 1 = a 4 s i n ( π x k ) , a ∈ ( 0 , 4 ] x_{k+1}=\frac{a}{4}sin(\pi x_k), \\a\in (0,4] xk+1=4asin(πxk),a∈(0,4]
10. Singer map
x k + 1 = μ ( 7.86 x k − 23.31 x k 2 + 28.75 x k 3 − 13.302875 x k 4 ) μ ∈ ( 0.9 , 1.08 ) x_{k+1}= \mu (7.86x_k- 23.31 x_k^2 + 28.75 x_k^3- 13.302875 x_k^4)\\\mu \in (0.9,1.08) xk+1=μ(7.86xk−23.31xk2+28.75xk3−13.302875xk4)μ∈(0.9,1.08)
11. Sinusoidal map
x k + 1 = a x k 2 s i n ( π x k ) a = 2.3 , x 0 = 0.7 时有简化形式: x k + 1 = s i n ( π x k ) x_{k+1}=a x_k^2 sin(\pi x_k)\\a=2.3,x_0=0.7 时有简化形式:\\x_{k+1} = sin(\pi x_k) xk+1=axk2sin(πxk)a=2.3,x0=0.7时有简化形式:xk+1=sin(πxk)
12. Tent map
The tent map is very similar to the logistic map.
x
k
+
1
=
{
x
k
α
x
k
<
α
(
1
−
x
k
)
1
−
α
x
k
≥
α
α
∈
(
0
,
1
)
x_{k+1} = \begin{cases} \frac{x_k}{\alpha} &x_k<\alpha \\ \frac{(1 - x_k)}{1-\alpha} & x_k \geq \alpha \end{cases} \ \ \ \alpha \in (0,1)
xk+1={αxk1−α(1−xk)xk<αxk≥α α∈(0,1)
13.β-chaotic
x t + 1 = k β ( x t ; μ ; v ; x 1 ; x 2 ) β ( x t ; μ ; v ; x 1 ; x 2 ) = { ( x − x 1 x c − x 1 ) μ ( x 2 − x x 2 − x c ) v i f x ∈ [ x 1 , x 2 ] 0 o t h e r w i s e β ( x t ; μ ; v ; x 1 ; x 2 ) ∈ R , x 1 < x 2 . x c = μ x 2 + v x 1 μ + v μ = b 1 + c 1 × a , v = b 2 + c 2 × a b i , c i 为实数例: a = [ − 0.8 : 0.7 ] , x = − 10 , x = 11 , k = 0.85 , b = 51 , c = 11 , b = 32 a n d c = − 12 x_{t+1}=k\beta(x_t ; \mu ; v ; x_1 ; x_2)\\ \beta(x_t ; \mu ; v ; x_1 ; x_2)=\begin{cases} (\frac{x-x_1}{x_c - x_1})^ \mu (\frac{x_2 - x}{x_2 - x_c})^v & if \ x \in[x_1,x_2] \\ 0 & otherwise \end{cases}\\ \beta(x_t ; \mu ; v ; x_1 ; x_2) \in R, x_1<x_2.\\ x_c=\frac{\mu x_2 + v x_1}{\mu + v}\\ \mu = b_1 + c_1 \times a,v=b_2 + c_2 \times a\\ b_i,c_i为实数 例: a=[−0.8:0.7], x =− 10 , x = 1 1 , k=0.85, b = 5 1 , c = 1 1 , b = 3 2 and c =− 12 xt+1=kβ(xt;μ;v;x1;x2)β(xt;μ;v;x1;x2)={(xc−x1x−x1)μ(x2−xcx2−x)v0if x∈[x1,x2]otherwiseβ(xt;μ;v;x1;x2)∈R,x1<x2.xc=μ+vμx2+vx1μ=b1+c1×a,v=b2+c2×abi,ci为实数例:a=[−0.8:0.7],x=−10,x=11,k=0.85,b=51,c=11,b=32andc=−12
14. Cubic map
x k + 1 = ρ ( 1 − x k 2 ) ρ 为控制参数 x_{k+1}= \rho(1-x_k^2)\\\rho为控制参数 xk+1=ρ(1−xk2)ρ为控制参数