神经网络的梯度检查

文章介绍了在构建深度网络后,如何通过梯度检查来验证反向传播计算损失函数导数的准确性。当误差在一定阈值内时,可认为计算无误。提供的代码示例展示了如何对3层网络的参数进行转换、前向传播、反向传播以及梯度检查的过程,用于调试和优化神经网络模型。
摘要由CSDN通过智能技术生成

当编写完一个深层的网络时,可能求导方式过于复杂稍微不小心就会出错,在开始训练使用这个网络模型之前我们可以先进行梯度检查。
梯度检查的步骤如下:
在这里插入图片描述
然后反向传播计算loss的导数grad,用以下公式计算误差:
在这里插入图片描述
通常来说,当 ϵ \epsilon ϵ 1 0 − 7 10^{-7} 107时,误差在 1 0 − 7 10^{-7} 107数量级或者小于 1 0 − 7 10^{-7} 107,基本上就没有错误。
下面开始代码部分(假设3层网络)。
首先写入参数格式转换所需的一些函数gc_utils.py:

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt

def sigmoid(x):
    """
    Compute the sigmoid of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- sigmoid(x)
    """
    s = 1/(1+np.exp(-x))
    return s
 
def relu(x):
    """
    Compute the relu of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- relu(x)
    """
    s = np.maximum(0,x)
    
    return s



def dictionary_to_vector(parameters):
    """
    Roll all our parameters dictionary into a single vector satisfying our specific required shape.
    """
    keys = []
    count = 0
    for key in ["W1", "b1", "W2", "b2", "W3", "b3"]:
        
        # flatten parameter
        new_vector = np.reshape(parameters[key], (-1,1))  # 将元素转化为一行(列值为1)
        keys = keys + [key]*new_vector.shape[0]
        
        if count == 0:
            theta = new_vector
        else:
            theta = np.concatenate((theta, new_vector), axis=0)
        count = count + 1
 
    return theta, keys
 
def vector_to_dictionary(theta):
    """
    Unroll all our parameters dictionary from a single vector satisfying our specific required shape.
    """
    parameters = {}
    parameters["W1"] = theta[:20].reshape((5,4))
    parameters["b1"] = theta[20:25].reshape((5,1))
    parameters["W2"] = theta[25:40].reshape((3,5))
    parameters["b2"] = theta[40:43].reshape((3,1))
    parameters["W3"] = theta[43:46].reshape((1,3))
    parameters["b3"] = theta[46:47].reshape((1,1))
 
    return parameters
 
def gradients_to_vector(gradients):
    """
    Roll all our gradients dictionary into a single vector satisfying our specific required shape.
    """
    
    count = 0
    for key in ["dW1", "db1", "dW2", "db2", "dW3", "db3"]:
        # flatten parameter
        new_vector = np.reshape(gradients[key], (-1,1))
        
        if count == 0:
            theta = new_vector
        else:
            theta = np.concatenate((theta, new_vector), axis=0)
        count = count + 1
 
    return theta

函数dictionary_to_vector()将"parameters" 字典转换为一个称为 “values"的向量,通过将所有参数(W1,b1,W2,b2,W3,b3)reshape为列向量并将它们连接起来而获得。反函数是”vector_to_dictionary",它返回“parameters”字典用于正向传播求loss。
以下为测试代码:
先添加等会测试使用的例子。

import numpy as np
import gc_utils  

def gradient_check_n_test_case():
    np.random.seed(1)
    x = np.random.randn(4, 3)
    y = np.array([1, 1, 0])
    W1 = np.random.randn(5, 4)
    b1 = np.random.randn(5, 1)
    W2 = np.random.randn(3, 5)
    b2 = np.random.randn(3, 1)
    W3 = np.random.randn(1, 3)
    b3 = np.random.randn(1, 1)
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2,
                  "W3": W3,
                  "b3": b3}

    return x, y, parameters

然后是前向传播与反向传播:

def forward_propagation_n(X, Y, parameters):
    """
    实现图中的前向传播(并计算成本)。

    参数:
        X - 训练集为m个例子
        Y -  m个示例的标签
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(5,4)
            b1  - 偏向量,维度为(5,1)
            W2  - 权重矩阵,维度为(3,5)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)

    返回:
        cost - 成本函数(logistic)
    """
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = gc_utils.sigmoid(Z3)

    # 计算成本
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = (1 / m) * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache

def backward_propagation_n(X, Y, cache):
    """
    实现图中所示的反向传播。

    参数:
        X - 输入数据点(输入节点数量,1)
        Y - 标签
        cache - 来自forward_propagation_n()的cache输出

    返回:
        gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = 1. / m * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T) * 2  # Should not multiply by 2
    # dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 4. / m * np.sum(dZ1, axis=1, keepdims=True) # Should not multiply by 4
    # db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

然后开始梯度检验:
这里大概的逻辑是遍历每个参数用上面的公式求得每个参数的grandapprox,然后总的grandapprox向量进行求误差的计算。

def gradient_check_n(parameters, gradients, X, Y, epsilon=1e-7):
    """
    检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度

    参数:
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
        grad_output_propagation_n的输出包含与参数相关的成本梯度。
        x  - 输入数据点,维度为(输入节点数量,1)
        y  - 标签
        epsilon  - 计算输入的微小偏移以计算近似梯度

    返回:
        difference - 近似梯度和后向传播梯度之间的差异
    """
    # 初始化参数
    parameters_values, keys = gc_utils.dictionary_to_vector(parameters)  # keys用不到
    grad = gc_utils.gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))

    # 计算gradapprox
    for i in range(num_parameters):
        # 计算J_plus [i]。输入:“parameters_values,epsilon”。输出=“J_plus [i]”
        thetaplus = np.copy(parameters_values)  # Step 1
        thetaplus[i][0] = thetaplus[i][0] + epsilon  # Step 2
        J_plus[i], cache = forward_propagation_n(X, Y, gc_utils.vector_to_dictionary(thetaplus))  # Step 3 ,cache用不到

        # 计算J_minus [i]。输入:“parameters_values,epsilon”。输出=“J_minus [i]”。
        thetaminus = np.copy(parameters_values)  # Step 1
        thetaminus[i][0] = thetaminus[i][0] - epsilon  # Step 2
        J_minus[i], cache = forward_propagation_n(X, Y, gc_utils.vector_to_dictionary(thetaminus))  # Step 3 ,cache用不到

        # 计算gradapprox[i]
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)

    # 通过计算差异比较gradapprox和后向传播梯度。
    numerator = np.linalg.norm(grad - gradapprox)  # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)  # Step 2'
    difference = numerator / denominator  # Step 3'

    if difference < 1e-6:
        print("梯度检查:梯度正常!")
    else:
        print("梯度检查:梯度超出阈值!")
    print(difference)

    return difference

X, Y, parameters = gradient_check_n_test_case()  # 自定义的简易数据集

cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)

运行后结果如下:

梯度检查:梯度超出阈值!
0.2850931566540251

显然反向传播出现了问题,我们进行检查,发现是dW2和db1出现问题,进行修改后再次运行:

梯度检查:梯度正常!
1.1885552035482147e-07

注意,如果网络很深参数量势必会很大,计算时间会很长,所以一般训练会关闭梯度检查,在训练之前先进行检查,没问题后进行训练。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值