最小二乘问题的二分之一哪来的

在最小二乘问题中,将误差平方和乘以 1 2 \frac{1}{2} 21的做法主要出于数学优化和计算便利性的考虑,具体原因及作用如下:

1. 微分计算的简化

当对目标函数进行微分时,平方项的导数会引入系数2。例如,对于误差项 ( y i − f ( x i , β ) ) 2 (y_i - f(x_i, \beta))^2 (yif(xi,β))2,其导数为 2 ( y i − f ( x i , β ) ) 2(y_i - f(x_i, \beta)) 2(yif(xi,β))。若目标函数中包含 1 2 \frac{1}{2} 21,则求导后系数2与 1 2 \frac{1}{2} 21相乘结果为1,避免了额外的系数干扰。这使得最终的导数和方程组形式更简洁,例如:
∂ E ∂ β j = ∑ i = 1 n ( y i − f ( x i , β ) ) ⋅ ∂ f ∂ β j \frac{\partial E}{\partial \beta_j} = \sum_{i=1}^n (y_i - f(x_i, \beta)) \cdot \frac{\partial f}{\partial \beta_j} βjE=i=1n(yif(xi,β))βjf
而非:
∂ E ∂ β j = 2 ∑ i = 1 n ( y i − f ( x i , β ) ) ⋅ ∂ f ∂ β j \frac{\partial E}{\partial \beta_j} = 2 \sum_{i=1}^n (y_i - f(x_i, \beta)) \cdot \frac{\partial f}{\partial \beta_j} βjE=2i=1n(yif(xi,β))βjf

2. 与概率模型的自然衔接

在统计学中,若假设误差服从高斯分布(正态分布),最大似然估计的目标函数形式为指数函数:
p ( ϵ ) ∝ exp ⁡ ( − ϵ 2 2 σ 2 ) p(\epsilon) \propto \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right) p(ϵ)exp(2σ2ϵ2)
此时最小化 1 2 ∑ ϵ i 2 \frac{1}{2}\sum \epsilon_i^2 21ϵi2等价于最大化似然函数, 1 2 \frac{1}{2} 21的系数与高斯分布的参数形式一致,便于理论推导。

3. 优化结果的等价性

误差平方和乘以 1 2 \frac{1}{2} 21并不改变极值点的位置。因为缩放目标函数的系数仅影响函数值的绝对值,不影响极值点的参数解。因此,这种缩放仅出于形式上的便利,而非数学本质的调整。

4. 梯度下降等算法的兼容性

在数值优化方法(如梯度下降)中, 1 2 \frac{1}{2} 21的系数可以使梯度的表达式更简洁,便于设置学习率 η \eta η。例如,参数更新公式:
β j : = β j − η ∑ i = 1 n ( f ( x i , β ) − y i ) ⋅ ∂ f ∂ β j \beta_j := \beta_j - \eta \sum_{i=1}^n (f(x_i, \beta) - y_i) \cdot \frac{\partial f}{\partial \beta_j} βj:=βjηi=1n(f(xi,β)yi)βjf
避免了因系数2导致的步长调整复杂性。

总结

加入 1 2 \frac{1}{2} 21的核心目的是通过数学形式的优化,简化微分、概率模型推导和数值计算过程,同时不改变最小二乘问题的本质解。这一做法是数学工具与实际问题结合的典型优化策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

easysports

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值