数据可视化:在Jupyter中使用Matplotlib绘制常用图表

Matplotlib是一个强大的数据可视化库,用于创建各种图表。

在Jupyter中使用Matplotlib可以轻松实现折线图、柱状图、散点图和饼图等常用图表

本篇文章将为你详细讲解用matlpotlib绘制常用图表的方法。

1、折线图

折线图是展示数据趋势和变化的常见图表类型。

%matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 生成示例数据
x = np.linspace(0, 10, 100)
y = np.sin(x)

# 绘制折线图
plt.plot(x, y, label='sin(x)')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('line chart')
plt.legend()
plt.show()

这段代码使用Matplotlib绘制了一个sin函数的折线图,展示了x和y的关系。
在这里插入图片描述

2、柱状图

柱状图常用于比较不同类别的数据。

%matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 生成示例数据
categories = ['A', 'B', 'C', 'D']
values = [3, 7, 2, 5]

# 绘制柱状图
plt.bar(categories, values, color='skyblue')
plt.xlabel('category')
plt.ylabel('value')
plt.title('Histogram')
plt.show()

这段代码使用Matplotlib绘制了一个简单的柱状图,展示了不同类别的数值对比。
在这里插入图片描述

3、散点图

散点图用于展示两个变量之间的关系,常用于观察数据的分布。

%matplotlib
import matplotlib.pyplot as plt
import numpy as np

# 生成示例数据
x = np.random.rand(50)
y = np.random.rand(50)

# 绘制散点图
plt.scatter(x, y, color='orange')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Scatter plot')
plt.show()

这段代码使用Matplotlib绘制了一个随机生成的散点图,展示了两个变量之间的关系。
在这里插入图片描述

4、饼图

饼图用于展示数据的相对比例,常用于显示占比关系。

%matplotlib
import matplotlib.pyplot as plt

# 生成示例数据
labels = ['A', 'B', 'C', 'D']
sizes = [25, 30, 20, 25]

# 绘制饼图
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, colors=['lightcoral', 'lightblue', 'lightgreen', 'lightskyblue'])
plt.axis('equal')  # 使饼图比例相等
plt.title('Pie')
plt.show()

这段代码使用Matplotlib绘制了一个简单的饼图,展示了不同部分的相对比例。
在这里插入图片描述
通过以上示例,你可以在Jupyter中使用Matplotlib绘制折线图、柱状图、散点图和饼图。这些基础图表类型能够满足许多数据可视化的需求。

  • 8
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matplotlib是Python常用的一个绘图库,可以绘制各种可视化图表。下面是一些常见的可视化图表实践。 1. 折线图 折线图常用于展示数据随时间变化的趋势。例如,绘制某股票每日收盘价的折线图。 ```python import matplotlib.pyplot as plt import numpy as np # 生成模拟数据 x = np.arange(0, 10, 0.1) y = np.sin(x) # 绘制折线图 plt.plot(x, y) # 添加标题和坐标轴标签 plt.title('Sine Wave') plt.xlabel('X-axis') plt.ylabel('Y-axis') # 显示图形 plt.show() ``` 2. 散点图 散点图常用于展示两个变量之间的关系。例如,绘制某公司员工年龄与薪资之间的散点图。 ```python import matplotlib.pyplot as plt import numpy as np # 生成模拟数据 np.random.seed(0) x = np.random.randint(20, 60, size=50) y = 2000 + 50 * x + np.random.normal(0, 100, size=50) # 绘制散点图 plt.scatter(x, y) # 添加标题和坐标轴标签 plt.title('Age vs. Salary') plt.xlabel('Age') plt.ylabel('Salary') # 显示图形 plt.show() ``` 3. 条形图 条形图常用于展示不同类别之间的比较。例如,绘制某班级各科成绩的条形图。 ```python import matplotlib.pyplot as plt import numpy as np # 生成模拟数据 scores = {'Chinese': 85, 'Math': 90, 'English': 80, 'Science': 95} # 绘制条形图 plt.bar(scores.keys(), scores.values()) # 添加标题和坐标轴标签 plt.title('Class Scores') plt.xlabel('Subject') plt.ylabel('Score') # 显示图形 plt.show() ``` 4. 饼图 饼图常用于展示不同类别所占比例。例如,绘制某公司各部门占比的饼图。 ```python import matplotlib.pyplot as plt import numpy as np # 生成模拟数据 departments = ['Marketing', 'Sales', 'IT', 'HR'] sizes = [20, 30, 25, 25] # 绘制饼图 plt.pie(sizes, labels=departments) # 添加标题 plt.title('Department Proportions') # 显示图形 plt.show() ``` 以上是一些常见的可视化图表实践,Matplotlib还支持绘制许多其他类型的图表,例如直方图、热力图等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值