UV - Python 包管理


创建 uv 项目

# 创建项目
uv init m3 

# 创建环境 
cd m3  
uv venv --python 3.11    

# 激活环境
source .venv/bin/activate 

# 添加库
uv add flask 


如果创建项目后,给库取别的名字,add 的时候,会自动创建 .venv 文件夹

> uv venv --python 3.12 e312                                              [0]
Using CPython 3.12.8 interpreter at: /opt/homebrew/opt/python@3.12/bin/python3.12
Creating virtual environment at: e312
Activate with: source e312/bin/activate

%> cd m4 
%> source e312/bin/activate                                                [0]

%> uv add flask                                                       [0]
warning: `VIRTUAL_ENV=e312` does not match the project environment path `.venv` and will be ignored; use `--active` to target the active environment instead
Using CPython 3.11.8 interpreter at: /Users/xx/miniconda3/bin/python3.11
Creating virtual environment at: .venv
Resolved 9 packages in 463ms
Installed 7 packages in 13ms
 + blinker==1.9.0
 + click==8.1.8
 + flask==3.1.0
 + itsdangerous==2.2.0
 + jinja2==3.1.5
 + markupsafe==3.0.2
 + werkzeug==3.1.3


已有项目

已有文件夹

没有 requirements.txt 文件

cd ./你的项目文件
uv init  # 会生成pyproject.tom、uv.lock、.python-version文件
uv add flask  # 会自动创建 .venv 环境 


有 requirements.txt 文件

cd ./你的项目文件
uv init 
uv run  # 会根据.python-version中的python版本生成 .venv 文件夹

uv add -r requirements.txt 

已有uv项目

cd project_name
uv sync  # 根据 pyproject.tom、uv.lock自动安装依赖包

参考:https://zhuanlan.zhihu.com/p/16909955110

以下是基于鲸鱼算法优化门控循环单元GRU神经网络的MATLAB代码示例: ```matlab %% 数据准备 load('data.mat'); % 加载数据 X = X_train; % 输入数据 X Y = Y_train; % 输出数据 Y inputSize = size(X, 2); % 输入数据维度 outputSize = size(Y, 2); % 输出数据维度 hiddenSize = 10; % 隐藏层维度 maxEpochs = 100; % 最大迭代次数 batchSize = 10; % 每个批次的数据量 %% 初始化神经网络参数 params.Wr = randn(hiddenSize, inputSize); params.Ur = randn(hiddenSize, hiddenSize); params.br = zeros(hiddenSize, 1); params.Wz = randn(hiddenSize, inputSize); params.Uz = randn(hiddenSize, hiddenSize); params.bz = zeros(hiddenSize, 1); params.W = randn(hiddenSize, inputSize); params.U = randn(hiddenSize, hiddenSize); params.b = zeros(hiddenSize, 1); params.Wy = randn(outputSize, hiddenSize); params.by = zeros(outputSize, 1); %% 训练神经网络 for epoch = 1:maxEpochs % 随机排列数据 idx = randperm(size(X, 1)); X = X(idx, :); Y = Y(idx, :); % 分批次训练 for batch = 1:batchSize:size(X, 1) % 获取批次数据 X_batch = X(batch:min(batch+batchSize-1, end), :); Y_batch = Y(batch:min(batch+batchSize-1, end), :); % 前向传播 [h, z, r, y] = gru_forward(X_batch, params); % 计算损失 loss = cross_entropy(y, Y_batch); % 反向传播 [grads, dh_next] = gru_backward(X_batch, Y_batch, h, z, r, params); % 更新参数 params = whale_optimize(params, grads); end end %% 预测神经网络输出 X_test = X_test; % 输入数据 X_test [Y_pred, ~] = gru_forward(X_test, params); % 神经网络输出 Y_pred ``` 其中,`gru_forward` 和 `gru_backward` 分别为门控循环单元GRU神经网络的前向传播和反向传播函数,`whale_optimize` 为基于鲸鱼算法的神经网络参数优化函数,具体实现可以参考相关文献或者自行编写。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值