自动驾驶汽车传感器分辨率:分辨率=atan(物高/距离)/2/pi*180
IPC就是工控机
高精地图
高精地图的采集-传感器
GNSS:确定四颗或者更多卫星的位置并计算出GPS接收设备与每颗卫星之间的距离,然后用这些信息使用三维空间的三边测量法推算出自己的位置。要使用距离信息进行定位,接收机必须知道卫星的确切位置。GPS接收机储存有星历,其作用就是告诉接收机每颗卫星在各个时刻的位置。在无人驾驶复杂的动态环境里,尤其在大城市中,由于各种高大建筑物的阻挡,GPS多路径反射的问题就越加明显。导致GPS定位信息存在几十厘米甚至几米的误差。
IMU:一般6轴运动处理组件(三个轴加速度计、三个轴陀螺仪)。加速度计传感器是力传感器,用来检查上下左右前后那个面受多少力(包括重力),然后计算每个上的加速度。陀螺仪就是角速度检测仪,检测每个上的角加速度。假设无人车以Z轴为轴心,在一秒钟转了90度,那么他在Z轴上的角速度就是30度/秒。从加速度推算距离需要进行两次积分。如果加速度测量有任何不正确,在两次积分过后位置错误会积累,导致位置预测错误。
轮速传感器(轮测距器):汽车前轮通常安装轮测距器,分别记录左、右两轮的总转数。通过分析时间段里左右轮的转数,我们可以推算出车向前走了多远,向左右转了多少度等。受地面材质影响较大,随着时间推进,测量偏差越来越大。
LIDAR:通过首先向目标物体发射一束激光,然后通过接收-反射的时间间隔来确定目标物体的实际距离。然后根据距离及激光发射的角度,通过简单的几何变化可以推导出物体的位置信息。LIDAR系统一般可以分为三个部分:激光发射器、扫描与光学部件、感光部件。我们可以检测到每一个点的空间坐标信息以及光强度信息。
高精地图的制作流程:
首先IMU及轮测距器可以高频率给出无人车的位置预测,但由于其精度的问题,位置可能会有一定程度的偏差。为了纠正这些偏差,可以采用传感器融合技术结合GPS与激光雷达的数据算出当前无人车的准确位置。然后根据当前的准确位置与激光雷达扫描的数据,把新数据添加到地图中。
高精地图的格式规范
NDS(Navigation Data Standard Association)是面向汽车生态系统的地图数据全球标准, 由宝马、大众、戴姆勒等知名国际汽车厂商、系统商以及数据商为主导成立,旨在通过多方的共同努力,制定出新的适合汽车制造商、系统供应商以及地图供应商未来发展的标准导航电子地图数据格式。
Opendrive是德国制定的国际通用的标准,国内百度阿波罗采用的就是这种地图数据规范。Apollo Opendrive规范是在标准Opendrive规范基础上结合阿波罗在自动驾驶方面的技术积累和实践经验改造而成的,相对于标准Opendrive规范,在数据表达上更加简单易行,对自动驾驶开发者也更加友好。
KIWI3.0
KIWI格式则是由日本KIWI协会(KIWI-W Consortium)制定的日系标准。而KIWI3.0是在已经广泛采用的KIWI2.0的基础上,针对增量更新需求的改进版。业界认为其设计基本还是沿用KIWI2.0的框架,其结构针对增量更新这一需求仍然存在着parcel数据量超限、要素之间依赖紧密、规划数据中重叠区域引起的大范围更新的等问题,其未来发展的局限性较大。
高精地图制造厂商
HERE HD LIVE MAP
Mobileye
Google waymo
TOMTOM
高精地图的生产流程
数据采集、数据处理(点云拼接、底图生产)、元素识别(基于深度学习的元素识别、基于深度学习的点云分类)、人工验证(车道线、路沿、信号灯、标志牌、虚拟道路、逻辑关系)。
高精地图的坐标系
WGS84: World Geodetic System 1984,是为GPS全球定位系统使用而建立的坐标系统。
定位
坐标系
地心惯性坐标系(ECI):
地心地固坐标系(ECEF)
当地水平坐标系:
通用横轴墨卡托投影(utm投影):
车体坐标系:
IMU坐标系:
相机坐标系:
激光雷达坐标系:
无人驾驶定位涉及坐标系:
GPS定位原理
载波相位定位:
GNSS扮演的角色
感知
规划
控制
ROS
APOLLO1.0循迹