自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 AOP各个名称的理解

AOP

2024-03-29 15:11:47 217

原创 python使用timm创建模型出现connect error

通过这个网址把权重下载下来,放到对应的目录地址checkpoint_path,比如checkpoint_path = ‘/home/xxx/wide_resnet50_racm-8234f177.pth’。这是因为timm下载权重默认是从huggingfaceHub,国内一般访问不了。其中backbone_name 是你要创建的模型名比如resnet50,自己修改下。上面的url就是权重下载链接,我这里下载的是wide_resnet50_2的权重。本人的timm版本是 0.9.11的。

2023-11-21 13:41:08 572 2

原创 windows11下载wsl出现0x800701bc错误

windows11下载wsl出现0x800701bc错误

2022-07-29 21:00:35 5727 1

原创 表格增删查改使用ajax请求后端数据并没有更新的问题

1.如果使用的是vue那么先检查你的表格有没有使用v-model实现数据双向绑定。2.使用ajax请求因为ajax默认使用的是异步请求,也就是客户端请求给服务端时,客户端不需要等待也可以做其他事情。这是我实现添加的代码,其中标框的async:false 表示使用同步请求。如果不加这行代码,就是默认异步请求,那么可能出现一种情况就是你在使用ajax请求后端插入数据(增删查改)的同时,他也会执行getData的代码,那么就可能导致在后端还没有插入数据时你先去获取数据,这样就会出现表格数据并没有更新的“

2022-03-14 12:09:38 1262

原创 No ‘Access-Control-Allow-Origin‘前端请求后端数据出现跨域问题

只需要在控制类类名前面加个注解即可@CrossOrigin

2022-03-08 10:58:16 238

原创 解决opencv读取(保存)不了路径为中文名的图片办法

读取图片:img = cv2.imdecode(np.fromfile(inputpath,dtype=np.uint8), -1)保存图片:cv2.imencode('.jpg',rotated_img)[1].tofile(outpath) #'.jpg'按自己需要填写图片格式

2022-02-28 17:29:59 2764 1

原创 关于colab上传数据集慢的问题

首先将自己的数据集进行压缩压缩完之后上传到自己的OneDrive,然后共享自己的文件复制链接到浏览器上打开(推荐使用Google浏览器)右键下载会出现链接然后再取消复制下载出现的链接然后到colab执行下载,执行语句如下:!curl 链接 --output 要下载的路径注意要下载的路径后面跟着的要是文件,不能是文件夹,如.zip文件,下载完之后再解压缩即可。如下图是我自己下载的,比直接上传要快很多。...

2022-02-20 17:03:10 904

原创 浅谈深度学习归一化加快模型收敛速度

在训练模型时,我们经常会对数据进行归一化,甚至在隐藏层中也加入归一化。这样做的主要目的是为了加快模型收敛速度。假设特征在经过卷积层后没有经过归一化的数据如下图分布(xx表示数据点),用sigmoid函数作为激活函数。那么在不经过归一化的时候数据所在的分布会使sigmoid的函数值接近0,这样会导致出现梯度消失的情况。假设在对经过卷积层的数据进行归一化后,数据分布如下图所示,分布会处在中间状态,sigmoid的函数值会取到比较大的值(相对于0)。这样便会加快模型的收敛速度。但是,我们一般并不是简单的

2021-12-20 16:29:59 4338 2

原创 使用conda时出现Solving environment: failed with initial frozen solve. Retrying with flexible solve错误

使用conda安装pytorch 出现了各种各样的错误。尝试了网上各种办法,最后我是这么解决的。首先添加镜像源,在终端运行以下代码conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --

2021-11-13 12:47:55 11686 4

原创 深度学习神经网络矩阵维度的变换

首先,以输入特征数为2,样本数为1,层数为2的神经网络举例子(隐藏层1层+输出层1层)激活函数为sigmoid函数所以有以下的网络一般输入层不算入层数,在这里写为第0层。第0层有两个输入特征,1个样本数,所以矩阵维度为[2,1]第1层有4个单元数,所以矩阵维度的第一维为4,第二维为前一层的单元数(即第0层),所以第1层的矩阵维度为[4,2]第2层有1个单元数,所以矩阵维度的第一维为1,第二维为前一层的单元数(即第1层),所以第2层的矩阵维度为[1,4]一般一个单元里面有两个计算,一个是线性计

2021-11-08 21:53:11 2031

原创 Network Compression 网络压缩

网络压缩(Network Compression):就是把一个大的网络压缩成一个小的网络。现如今,手机设备、手表等都比较流行,但我们平常训练的网络都比较大,在一些“小”的设备或许很难存储和运行。所以这就需要把网络进行压缩。常用的方法:Network Pruning(网络剪枝):将训练完的network不重要的参数或神经元进行删除,然后在训练一次。在我们训练网络时,有的参数或者神经元其实并没有起作用或者起很大的作用,所以可以把这些参数或者神经元删除,然后在训练一遍。但为什么要再训练一遍呢,因为你删除参数或

2021-11-03 12:40:24 698

原创 Solving environment: failed with initial frozen solve. Retrying with flexible solve.

使用conda安装pytorch老是失败于是使用以下命令安装pytorchconda install pytorch torchvision cudatoolkit=10.1 下载成功

2021-10-30 00:26:20 251

原创 Ubuntu如何把主文件夹的中文设置成英文

打开终端输入命令:export LANG=en_US接着输入更新命令:xdg-user-dirs-gtk-update然后输入命令:export LANG=zh_CN最后输入重启命令:sudo reboot重启之后就可以看到主文件夹变成英文的了。

2021-10-26 21:36:36 629 2

原创 Ubuntu文本文件在vi(vim)编辑器中怎么显示行号

首先打开终端使用vim打开vim的配置文件sudo vim /etc/vim/vimrc按下大写G Shift+G来到文件末尾按下 i 进入编辑(插入)模式输入set number按ESC返回命令模式,再按 :转换到末行模式,键入wq按回车,保存并退出...

2021-10-25 10:48:19 993 1

原创 海明码(纠错编码)与海明不等式

**检错编码:**只能发现错误,不能纠错。常用的有奇偶校验码和CRC冗余循环码。**纠错编码:**能发现错误且能纠错。常用的有海明码。因为海明码要既能发现错误,也要能知道哪位出现错误才能纠错,所以就有不等式如下:海明不等式:其中r为冗余信息位,k为信息位为什么是这条式子呢?1.r位冗余位的组合有2^r种2.选择2^r中其中一种用于表示数据的正确性3.其余的2^r -1种用于表示编码中哪一位产生错误总共有k+r位,再加上一种用于表示数据的正确性,所以海明不等式的表示为:...

2021-08-02 14:22:57 2336

原创 IDEA springboot项目导出jar包及运行jar包

首先点击Terminal在Terminal下输入mvn clean package看到以下这个提示则是打包成功接着咱们可以在自己的项目下看到打包成功的jar包,如图===================================================运行jar包我的jar包位置如下:写一个bat文件,里面的内容为红色框为jar包的位置。保存start.bat文件。双击start.bat文件。弹出命令行窗口:在浏览器中输入自己的地址:比如我的http

2021-07-19 11:44:03 1378

原创 xxx.jar中没有主清单属性解决办法

在springboot中的pom.xml文件中引入 <build> <plugins> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId>

2021-07-19 11:38:05 310

原创 SpringMVCService,dao(mapper),po(entity),controller控制层、服务层等是什么意思

po(entity):实体层,存储数据用dao(mapper):和数据库打交道用的Service:业务层,调用dao层的函数实现业务controller:控制层,与前端交互用的所需操作调用顺序:箭尾指向箭头->即po->dao指po里面的函数被dao层函数调用其余类似以上为本人的理解。...

2021-07-01 13:55:28 1154

原创 python安装pip简单容易

第一步:创建一个文本文件,修改后缀名为.py,起名为get-pip第二步:打开网址[https://bootstrap.pypa.io/get-pip.py]复制所有文字到我们新建的文件get-pip.py中第三步:在get-pip.py所在目录下cmd打开命令行窗口:如我的就是在Python3.6.6下输入Python get-pip.py回车检验是否成功,输入pip出现以上即成功。...

2021-06-26 22:09:38 268 1

原创 DataFrame某一列使用append追加数据为什么为空

import pandas as pddata_sample =pd.DataFrame()data_sample['cumulative_Confirmed']=[]data_sample['cumulative_Confirmed'].append([1,2,3])这样输出data_sample[‘cumulative_Confirmed’]为空应该在添加的时候赋值给data_sample[‘cumulative_Confirmed’]data_sample['cumulative_Con

2021-06-25 21:06:15 1587

原创 centOS7启用(运行)NetworkManager管理网络

启用 NetworkManager 服务在命令行下运行以下语句:chkconfig NetworkManager on设置不用重新开机便可以应用它:service NetworkManager start运行完语句便可在界面右上角看到一个图标,即启动成功

2021-06-20 11:15:50 18946 4

原创 LSTM深度学习网络模型保存不了出现EOFerror,TypeError: can‘t pickle _thread.RLock objects

使用sklearn库里的模型使用以下代码保存和读取都出现了错误。joblib.dump(clf,'filename.pkl')clf=joblib.load('filename.pkl')使用Keras提供的一个API解决了该模型以HDF5文件格式保存,所以先要安装h5py Python库,安装方法如下:在cmd中直接pip install h5pymodel = Sequential()model.add(LSTM(...))model.compile(...)model.fit(

2021-04-10 20:24:53 766

原创 LSTM(长短时记忆神经网络)预测地铁人流源码

# -*- coding:utf-8 -*-import pandas as pdimport matplotlib.pyplot as pltimport numpy as npfrom sklearn.preprocessing import MinMaxScalerfrom keras.models import Sequentialfrom keras.layers import Dense, LSTMdata = pd.read_csv('./data/单月每日客流1.csv'

2021-04-10 20:14:24 1814 1

原创 深度学习逻辑回归Logistic Regression(入门)

自己的笔记最经典的例子就是房价预测了。通过这个例子来记录下自己对深度学习的理解。(如果理解有误,欢迎指正)1.房价预测假设房价只由房子的大小决定,这里用x表示,而房子的价格用y表示。(前提我们有一些数据(x,y))在坐标轴上描点,如下图,我们需要做的就是找出一条直线以使点尽量在直线上。直线的方程为y=ax+b,在这里,我们把它写成y=wx+b,在我们已知x和y的情况下,我们要求的就是参数w和b。所以首先要学搭建神经网络。这是单个神经网络(规模较小),规模较大的神经网络是由多个单神经元组成。在

2021-01-26 21:54:49 393

原创 差分约束入门+理解(太菜了)

差分约束经典的形式就是给出一组不等式,让你求出满足这组不等式的解(所有的解值最大或最小)。例如:这组不等式要求x2、x1的差值范围那么就是把1、2式相加即得x2-x1<=5 (1)x2-x1<=1 (2)很明显,取x2-x1<=1,就是右边取最小值,因为x2、x1要同时满足上面两个不等式,所以x2、x1差的范围小于等于1。由以上我们可以得到什么启发呢?我们知道,最短路算法是通过(如下图)这样松弛边的这个和不等式有什么关系呢?(看下面这个图)x3-x1<=

2020-09-11 19:14:12 158

原创 点分治入门+理解

推荐博文:点分治入门理解:首先要找出树中的重心。那么是什么树的重心呢?树的重心即依次以每个节点为根,求出他们的最大子树的节点数,根节点中最大子树节点数最小的就是树的重心。比如以这颗树为例中:在以1节点为根节点时,它的子树分别为两个蓝色圈所包围的部分,左边部分的节点数为3,,右边部分的节点数为2,所以他的最大子树节点数为3。在以2为根节点,求他的最大子树,如图,最大子树的节点数为3。这样依次求3、4、5、6的最大子树节点数。3的最大子树节点数为4;4的最大子树节点数为4;5的最大

2020-09-06 15:24:07 150

原创 树的直径

**树的直径:**一棵树中相距最远的两个点所在的路径即为树的直径。性质:树中任意一个点到直径的其中一个端点距离最远。求直径端点:两遍DFS先以树中任意一个点出发,找出离该点距离最远的端点A,该端点A即为直径的其中一个端点,再以端点A出发,寻找离端点A距离最远的端点B,此时端点B即为直径的另外一个端点。题目:https://ac.nowcoder.com/acm/contest/6874/A#include<bits/stdc++.h>using namespace std;#def

2020-08-31 16:22:13 96

原创 codeblocks打开不能显示界面,但任务栏有显示图标,卸载重装也没用,用下面的方法打开了主界面

解决方法:关闭codeblocks进入C:\Users\$USER\AppData\Roaming\CodeBlocks, 删除掉default.conf, (可以先备份下, 避免有其他问题)重启codeblocks主界面又显示了。注:$USER代表你的用户名。由于AppData文件可能被隐藏了,所以有一种办法就是用命令行删除,电脑键盘win+r,输入cmd打开命令行控制界面,输入cd .\AppData\Roaming\CodeBlocks或者cd C:\Users\$USER\AppD

2020-08-12 17:33:47 2407 2

原创 欧拉回路,欧拉通路(dfs+并查集)

欧拉回路定义:如果图G中的一个路径包括每个边恰好一次,则该路径称为欧拉路径。如果一个回路是欧拉路径,则称为欧拉回路。要判断无向图G时欧拉回路的充要条件:G是无奇度结点的连通图。(欧拉通路则仅存在两个奇度顶点,并且以此两个顶点为端点)。所以把握两个条件,一个是无奇度顶点,一个是连通。前置知识:无向图顶点度的个数即为与顶点相关联的边的个数。判断连通可以用两种思路,一个是并查集,一个是dfs;并查集实现:#include<bits/stdc++.h>using namespace s

2020-07-06 16:05:58 537

原创 图的最小生成树(kruskal)

最小生成树定义(白话):给你一个地图,这个地图上有n个城市两两互通,让你选择至少n-1条边可以使n个城市互通,并且使边的总长度之后最短。第一种思路:每次选择最短的一条边进行连通,直到选择了n-1条边为止(因为n个点要互通,只需n-1条边即可)。所以首先要对边从小到大进行排序,每次选择边时,把边的两个顶点加入已连通的集合中,当然,如果这两个顶点都加入了已连通的集合中,就忽略这条边。所以要用并查集去判断两个顶点是否在同一个已连通的集合中。如果是,则舍弃这条边,反之,则把两个顶点中未加入到连通集合的顶点加入

2020-07-06 15:34:18 272

原创 拓扑排序

拓扑排序定义:对一个有向无环图G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则u在线性序列中出现在v之前。**前置知识:**对于边u->v, u称为v的前驱,v称为u的后继。拓扑排序实现步骤:1.在有向图中选一个没有前驱的顶点并且输出2.从图中删除该顶点和所有以它为尾的弧即删除所有和它有关的边3.重复上述两步,直至所有顶点输出,或者当前图中不存在无前驱的顶点为止,如果是后者则代表这个有向图是有环的,因此,也可以通过拓扑排

2020-07-06 15:01:54 205

原创 单源(多源)最短路算法Dijkstra、Bellman-Ford、SPFA

最短路算法单源最短路:即一个点到任意点的最短路径多源最短路:即任意一点到任意一点的最短路径Dijkstra算法:这个算法是通过点去更新最短路,每次找离源点最近的一个顶点,然后以该顶点为中心进行扩展,最终找到源点到其余点的最短路径。用一个dis数组来存源点到其余各点的最短路径,起初,dis【s】源点设为0,其余设为极大值,初始化源点到其他能达到的顶点的距离,每次从dis数组里面选择一个从未更新过的顶点进行扩展,依次循环n-1次,则能得到源点到其余各点的最短路径。代码如下:#include<

2020-07-06 14:16:58 1203

原创 图的割点vs图的割边(Tarjan算法)

图的割点vs图的割边(Tarjan算法)割点含义:如果一个无向图中,删除某个顶点之后可以使任意两点之间不能相互到达,这个顶点即为割点。割边含义:在一个无向连通图中,如果删除一条边使得任意两点无法互通,这条边就是割边。前置知识:dfs序,即以dfs遍历图,每个点依次被访问到的次序。下面将会以dfs【】数组记录。最早访问顺序:即一个图中,不通过父亲节点能够最早访问到的次序。即在不经过父亲节点,回朔时访问到的顶点的最早时间戳。下面以low【】数组记录。求割点:#include<bits/stdc

2020-07-06 12:21:24 204

原创 Tarjan算法

前置知识:如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。Tarjan算法:求一个图中有几个强连通分量。Tarjan基于深度优先搜索,首先要求图中每个节点的dfs序,即时间戳,就是每个点被访问的次序dfs【N】,用low【N】数组记录每个连通分量的根结点,根节点规定以子树中最小的时间戳为根节点。Tarjan算法

2020-05-22 18:59:29 86

原创 背包问题

特点:给定几种物品,每种物品有且只有一个,并且有价值和体积两个属性。考虑:对每个物品只需要考虑放与不放两种情况。1.不放,不需要处理。2.放,由于不清楚之前放入的物品占据了多大的空间,所以需要枚举,将这个物品放入背包后可能占据背包空间的所以情况。背包容量v,第i件物品的体积是c[i],价值是w[i];状态转移方程:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]...

2020-03-20 22:37:56 112

原创 欧拉筛选素数复杂度线性阶

for(int i=2;i<maxn;i++){if(!v[i]){prime[cnt++]=i;}for(int j=0;j<cnt&&iprime[j]<maxn;j++){v[iprime[j]]=true;if(i%prime[j]==0)//保证去除筛选最小质因子的倍数break;}}`...

2019-11-18 22:13:59 119

原创 树状数组

树状数组

2019-10-26 20:02:49 57

原创 线段树

线段数可以解决的问题:区间最大值或最小值,区间修改求和#include<bits/stdc++.h>using namespace std;#define ll long long#define lson k<<1#define rson (k<<1)+1struct node{ int l,r,w,f;//f为树懒标记}s[N<&l...

2019-10-26 19:39:10 84

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除