libtorch选择显卡运行torchscript

#include <cuda_runtime_api.h>

std::string filename = "centernet.pt"//模型路径
int gpu_id = 1;									//gpu id 0代表第一块可见gpu
cudaSetDevice(gpu_id);					//切换显卡
torch::jit::script::Module module = torch::jit::load(filename,torch::Device(torch::DeviceType::CUDA,gpu_id));//加载模型

libtorch 加载torchscript模型有三个重载函数

TORCH_API script::Module load(
    std::istream& in,
    c10::optional<c10::Device> device = c10::nullopt,
    script::ExtraFilesMap& extra_files = default_extra_files);

TORCH_API script::Module load(
    const std::string& filename,
    c10::optional<c10::Device> device = c10::nullopt,
    script::ExtraFilesMap& extra_files = default_extra_files);

TORCH_API script::Module load(
    std::unique_ptr<caffe2::serialize::ReadAdapterInterface> rai,
    c10::optional<c10::Device> device = c10::nullopt,
    script::ExtraFilesMap& extra_files = default_extra_files);

目前我是从文件加载模型,用第二个函数,选择设备这里主要关注第二个参数

c10::optional<c10::Device> device

这里我们需要构造一个device类传入,我们看Device类定义

Device(DeviceType type, DeviceIndex index = -1)

这里很显然第一个是设备类型,第二个是设备索引
第一个是枚举类:我们选择torch::DeviceType::CUDA  也就是nvidia显卡计算平台
第一个就是显卡id  我们填0代表第一块显卡,1代表第二块显卡

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
注:本文将以 YOLOv5 为例,介绍如何使用 LibTorchTorch TensorRT 对 TorchScript 模型进行加速推理。本文默认读者已经熟悉 YOLOv5 和 TorchScript 的相关知识。 1. 准备工作 在开始之前,需要先安装以下工具: - PyTorch - LibTorch - Torch TensorRT 其中,PyTorch 是用于训练 YOLOv5 模型的框架,而 LibTorchTorch TensorRT 则是用于加速推理的工具。在安装完这些工具之后,需要将训练好的 YOLOv5 模型转换为 TorchScript 格式。 2. 将 YOLOv5 模型转换为 TorchScript 格式 将训练好的 YOLOv5 模型转换为 TorchScript 格式的方法有很多种,这里给出一种比较简单的方法: ```python import torch from models.experimental import attempt_load from utils.general import set_logging from torch.utils.mobile_optimizer import optimize_for_mobile def export_torchscript(weights, img_size, device='cpu'): set_logging() model = attempt_load(weights, map_location=device) img = torch.zeros((1, 3, img_size, img_size), device=device) model.eval() traced_script_module = torch.jit.trace(model, img) traced_script_module_optimized = optimize_for_mobile(traced_script_module) traced_script_module_optimized.save("yolov5s.torchscript.pt") export_torchscript(weights='yolov5s.pt', img_size=640, device='cpu') ``` 在这个函数中,我们首先加载训练好的 YOLOv5 模型,然后使用 torch.jit.trace 将模型转换为 TorchScript 格式。接着,我们使用 torch.utils.mobile_optimizer.optimize_for_mobile 对模型进行优化,最后将优化后的模型保存到磁盘上。 3. 加载 TorchScript 模型 在 C++ 中加载 TorchScript 模型需要使用 LibTorch,下面是加载模型的代码: ```cpp #include <torch/script.h> // One-stop header. int main(int argc, const char* argv[]) { // Load the model. torch::jit::script::Module module; try { // Deserialize the ScriptModule from a file using torch::jit::load(). module = torch::jit::load("yolov5s.torchscript.pt"); } catch (const c10::Error& e) { std::cerr << "error loading the model\n"; return -1; } return 0; } ``` 在这个代码中,我们使用 torch::jit::load 函数加载 TorchScript 模型。如果加载失败,将输出错误信息并返回 -1,否则返回 0。 4. 使用 Torch TensorRT 进行推理 为了加速 TorchScript 模型的推理,我们可以使用 Torch TensorRT。下面是使用 Torch TensorRT 进行推理的代码: ```cpp #include <torch/script.h> // One-stop header. #include <iostream> #include <memory> #include <vector> #include <chrono> #include <NvInferRuntime.h> int main(int argc, const char* argv[]) { // Load the model. torch::jit::script::Module module; try { // Deserialize the ScriptModule from a file using torch::jit::load(). module = torch::jit::load("yolov5s.torchscript.pt"); } catch (const c10::Error& e) { std::cerr << "error loading the model\n"; return -1; } // Create a TensorRT engine from the TorchScript module. nvinfer1::IRuntime* runtime = nvinfer1::createInferRuntime(gLogger); nvinfer1::ICudaEngine* engine = createCudaEngine(module, runtime, batchSize, kINPUT_BLOB_NAME, kOUTPUT_BLOB_NAME, maxWorkspaceSize); if (!engine) { std::cerr << "error creating the engine\n"; return -1; } // Create a TensorRT execution context. nvinfer1::IExecutionContext* context = engine->createExecutionContext(); if (!context) { std::cerr << "error creating the context\n"; return -1; } // Prepare inputs and outputs. std::vector<float> inputData(batchSize * inputSize * inputSize * 3); std::vector<float> outputData(batchSize * outputSize * outputSize * (5 + numClasses)); void* buffers[] = {inputData.data(), outputData.data()}; // Run inference. auto start = std::chrono::high_resolution_clock::now(); context->execute(batchSize, buffers); auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration<double, std::milli> elapsed = end - start; std::cout << "elapsed time: " << elapsed.count() << " ms\n"; // Release resources. context->destroy(); engine->destroy(); runtime->destroy(); return 0; } ``` 在这个代码中,我们首先使用 createCudaEngine 函数将 TorchScript 模型转换为 TensorRT engine。接着,我们创建 TensorRT execution context,准备输入和输出数据,并调用 context->execute 进行推理。最后,我们释放资源。 5. 总结 本文介绍了如何使用 LibTorchTorch TensorRT 对 TorchScript 模型进行加速推理。在实际应用中,我们可以根据自己的需求对代码进行修改和优化,以达到更好的性能和效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值