自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 P18 完整的模型验证套路

利用已经训练好的模型,给它提供输入进行测试,能够对外进行应用。

2023-08-09 14:10:04 266

原创 P17 完整的模型训练套路

对前几章节的回顾,以CIFAR10为数据集模拟一套基础的完整训练模型,总结关键步骤和代码,规范整体流程。

2023-08-06 15:11:28 512

原创 P16 网络模型的保存与读取

避免这个报错有两个方法: 1. 在load模块的最前面,加上from xxx import *,就可以随意使用save模块的内容了; 2. 把建立好的神经网络模型也复制过来,跟正常的使用模块相比,不需要再加上实例化`tudui=TuDui()`这个步骤了。一般我们自己在工程中,会把模型放在一个文件夹或者模块里,不需要考虑这个问题

2023-08-03 12:02:18 283

原创 P15 现有模型的使用和修改

使用vgg16,用在CIFAR数据集上,进行分类:Vgg16训练时,用的是ImageNet数据集,它把数据分为1000个类,而CIFAR把数据分为10类,那么就有两种做法,来利用vgg16来处理 CIFAR数据集:1、vgg16后面加一个新的线性层,使1000映射到10;2、直接把vgg16最后的输出层改为10类:这里的add_module是集成 - 在pytorch当中的方法了,直接用

2023-07-26 12:54:58 91

原创 P14 优化器

前面我们提到了反向传播,说到了当我们使用损失函数的时候,可以调用损失函数的一个backward()得到一个反向传播,可以求出每一个需要调节的参数对应的梯度,优化器根据得到的梯度对参数进行调整,以达到整体误差降低的目的。

2023-07-20 23:13:41 50

原创 P13 损失函数与反向传播

损失函数计算实际输出和目标之间的差距为后续训练更新输出提供一定的依据(反向传播)梯度下降()在机器学习中应用十分的广泛,不论是在线性回归还是Logistic回归中,它的主要目的是通过迭代找到目标函数的最小值,或者收敛到最小值。

2023-07-12 11:03:03 111

原创 P12 搭建神经网络小实战+Sequential

主要内容是利用前几期知识搭建一个神经网络小实战,相当于前几期的小总结,目的在于熟悉神经网络搭建流程,掌握关键代码,了解各参数的设置和调用。

2023-06-27 17:50:20 101

原创 P11 线性层

线性层:这里的线性层,跟非线性激活,形成对比:线性层,是k和b,对输入数据x,进行一次函数的处理,而非线性激活(激活函数)是在对神经元或者输入,做非线性处理

2023-06-26 22:16:08 47

原创 Day10 最大池化层 Pooling layer MaxPool2d

池化:在保留数据特征的情况下减小数据量,它实际上是一种形式的降采样。有多种不同形式的非线性池化函数,而其中“最大池化(Maxpooling)”是最为常见的。它是将输入的图像划分为若干个矩形区域,对每个子区域输出最大值。与卷积不用,池化是选取核中最大数作为output通常来说,CNN的卷积层之间都会周期性地插入池化层。

2023-06-25 14:45:13 879

原创 Day9 神经网络-卷积层conv2d的使用

本次学习之后使我认识到阅读官方文档的重要性回顾了dataset和dataloader数据读取、tensorboard的使用、神经网络主框架Module学习了卷积层的conv2d的相关概念和机制,对参数的设置有了清晰的理解,以及如何将dataloader中的数据读取并送入神经网络经过卷积层处理再展示到tensorboard中

2023-06-23 18:07:34 1255

原创 Day8 神经网络的基本骨架nn.Module

进入pytorch官网,打开torch.nn神经网络模块:提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

2023-06-21 22:46:27 61

原创 Day7 DataLoader + Tensorboard

之前学习过Dataset读取数据,其实,DataLoader和DataSet就是数据读取子模块中的核心机制。: Dataset抽象类,所有自定义的Dataset都需要继承它,并且必须重写getitem、init、len这个类的方法。getitem方法是Dataset的核心,作用是接收一个索引(将路径对应数据通过os.dirlist合并为一个列表并返回), 返回一个样本,参数里面接收index,然后编写如何通过这个索引去读取数据部分。接下来正文部分介绍DataLoader。

2023-06-19 08:57:21 124

原创 Day6 torchvision中的数据集的使用(没啥总结的,主要复习)

该篇内容主要是回顾Day3---Day5的知识,自己复盘用^ _ ^

2023-06-18 14:18:13 107

原创 Day5 Transforms(二)含运行结果展示

补充一些transforms中的类,以及实现方法ToTensor():把一个PIL或者Numpy类型的图片转换为tensor类型:输入为tensor类型的图像,参数为均值和标准差的序列,对应于图片的通道数Resize():把给定的图片重新定义为指定尺寸,输入为PIL图片,参数为[h,w],若只指定一个参数,则会给其匹配一个参数,相当于等比例缩放。Compose():把几个transform的功能进行组合,参数是集中transform的列表。

2023-06-17 13:45:21 154

原创 Day4 Torchvision 中的Transforms(一)

小土堆大神的transforms第一课,主要记录了在python中的用法,以及totensor的举例(结合了tensorboard)。补充了PILImage、numpy.adarray、tensor的读取和转换。明天更新更多常用的transforms

2023-06-16 13:06:51 319

原创 自学深度学习pytorch——Day3 Tensorboard

TensorBoard 是一组用于数据可视化的工具。它包含在流行的开源机器学习库 Tensorflow 中。

2023-06-15 08:37:04 460

原创 自学深度学习pytorch——Day2 Dataset类加载数据

pytorch中有关加载数据的操作,主要涉及Dataset和DataLoader。其中,Dataset主要获取数据,包括如何读取对应数据和获取数据的数量即长度len(这样可以知道什么时候做完一整轮操作)。DataLoader主要用于加载获取到的数据,以特定的方式为网络提供数据文件路径、合并文件路径、把文件夹中的每一个文件名称记录下来做成一个列表存储,方便通过idx去获取每一个数据。

2023-06-14 17:12:58 760

原创 自学深度学习pytorch——Day1 环境搭建

目的供自己学习和复盘,大家看看就好,有问题欢迎指正,祝前程似锦

2023-06-13 17:01:26 173 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除