HBase 优化
高可用
在 HBase 中 HMaster 负责监控 HRegionServer 的生命周期,均衡 RegionServer 的负载,
如果 HMaster 挂掉了,那么整个 HBase 集群将陷入不健康的状态,并且此时的工作状态并
不会维持太久。所以 HBase 支持对 HMaster 的高可用配置。
1.关闭 HBase 集群(如果没有开启则跳过此步)
[root@Bigdata01 hbase]$ bin/stop-hbase.sh
2.在 conf 目录下创建 backup-masters 文件
[root@Bigdata01 hbase]$ touch conf/backup-masters
3.在 backup-masters 文件中配置高可用 HMaster 节点
[root@Bigdata01 hbase]$ echo Bigdata02 > conf/backup-masters
4.将整个 conf 目录 scp 到其他节点
[root@Bigdata01 hbase]$ scp -r conf/ Bigdata02:/opt/module/hbase/
[root@Bigdata01 hbase]$ scp -r conf/ Bigdata03:/opt/module/hbase/
5.打开页面测试查看
预分区
每一个 region 维护着 StartRow 与 EndRow,如果加入的数据符合某个 Region 维护的
RowKey 范围,则该数据交给这个 Region 维护。那么依照这个原则,我们可以将数据所要
投放的分区提前大致的规划好,以提高 HBase 性能。
1.手动设定预分区
Hbase> create 'staff1','info','partition1',SPLITS => ['1000','2000','3000','4000']
2.生成 16 进制序列预分区
create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}
3.按照文件中设置的规则预分区
创建 splits.txt 文件内容如下:
aaaa
bbbb
cccc
dddd
然后执行:
create 'staff3','partition3',SPLITS_FILE => 'splits.txt'
4.使用 JavaAPI 创建预分区
public class HbaseAPI{
//创建上下文对象
public static Configuration conf ;
//创建Hbase连接池
public static Connection conn = null;
//创建 管理员
public static Admin admin = null;
//静态代码块,优先执行
static {
try {
//创建上下文对象并连接hbase属性
conf = HBaseConfiguration.create();
conf.set( "hbase.zookeeper.quorum","Bigdata01,Bigdata02,Bigdata03" );
//连接池调用工厂连接类
conn = ConnectionFactory.createConnection( conf );
//用连接池获取hbase的管理员
admin = conn.getAdmin();
} catch (IOException e) {
e.printStackTrace();
}
}
public static void close(){
try {
//如果管理员不等于空则关闭资源
if(admin != null) {
admin.close();
}
} catch (IOException e) {
e.printStackTrace();
}
try {
//如果连接不等于空则关闭连接
if(conn != null){
conn.close();
}
}catch (IOException e){
e.printStackTrace();
}
}
public static void main(String[] args) throws IOException {
//获取管理员
Admin admin = conn.getAdmin();
//创建字节分区
byte[][] splitKeys = new byte[3][];
//设置分区值
splitKeys[0]=Bytes.toBytes("1000");
splitKeys[1]=Bytes.toBytes("2000");
splitKeys[2]=Bytes.toBytes("3000");
//创建表描述器
HTableDescriptor desc = new HTableDescriptor(TableName.valueOf("staff3"));
//添加列族
desc.addFamily(new HColumnDescriptor("info"));
//创建表分区
admin.createTable(desc,splitKeys);
//关闭资源
admin.close();
}
}
RowKey设计
一条数据的唯一标识就是rowkey,那么这条数据存储于哪个分区,取决于rowkey处于哪个一个预分区的区间内,设计rowkey的主要目的 ,就是让数据均匀的分布于所有的region中,在一定程度上防止数据倾斜。接下来我们就谈一谈rowkey常用的设计方案。
1, 生成随机数、hash、散列值
比如:
原本rowKey为1001的,SHA1后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本rowKey为3001的,SHA1后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本rowKey为5001的,SHA1后变成:7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的rowKey来Hash后作为每个分区的临界值。
2, 字符串反转
20170524000001转成10000042507102
20170524000002转成20000042507102
// 这样也可以在一定程度上散列逐步put进来的数据。
3, 字符串拼接
20170524000001_a12e
20170524000001_93i7
内存优化
HBase操作过程中需要大量的内存开销,毕竟Table是可以缓存在内存中的,一般会分配整个可用内存的70%给HBase的Java堆。但是不建议分配非常大的堆内存,因为GC过程持续太久会导致RegionServer处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。
基础优化
1,允许在HDFS的文件中追加内容
hdfs-site.xml、hbase-site.xml
属性:dfs.support.append
解释:开启 HDFS 追加同步,可以优秀的配合 HBase 的数据同步和持久化。默认值为 true。
2, 优化DataNode允许的最大文件打开数
hdfs-site.xml
属性:dfs.datanode.max.transfer.threads
解释:HBase一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:4096
3,优化延迟高的数据操作的等待时间
hdfs-site.xml
属性:dfs.image.transfer.timeout
解释:如果对于某一次数据操作来讲,延迟非常高,socket需要等待更长的时间,
建议把该值设置为更大的值(默认60000毫秒),以确保socket不会被timeout掉。
4,优化数据的写入效率
mapred-site.xml
属性:
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为true,
第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec或者其他压缩方式。
5,设置RPC监听数量
hbase-site.xml
属性:hbase.regionserver.handler.count
解释:默认值为30,用于指定RPC监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。
6,优化HStore文件大小
hbase-site.xml
属性:hbase.hregion.max.filesize
解释:默认值10737418240(10GB),如果需要运行HBase的MR任务,可以减小此值,因为一个region对应一个map任务,如果单个region过大,
会导致map任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个region会被切分为两个Hfile。
7,优化hbase客户端缓存
hbase-site.xml
属性:hbase.client.write.buffer
解释:用于指定HBase客户端缓存,增大该值可以减少RPC调用次数,但是会消耗更多内存,反之则反之。
一般我们需要设定一定的缓存大小,以达到减少RPC次数的目的。
8,指定scan.next扫描HBase所获取的行数
hbase-site.xml
属性:hbase.client.scanner.caching
解释:用于指定scan.next方法获取的默认行数,值越大,消耗内存越大。
9,flush、compact、split机制
当MemStore达到阈值,将Memstore中的数据Flush进Storefile;compact机制则是把flush出来的小文件合并成大的Storefile文件。split则是当Region达到阈值,会把过大的Region一分为二。
涉及属性:
即:128M就是Memstore的默认阈值
hbase.hregion.memstore.flush.size:134217728
即:这个参数的作用是当单个HRegion内所有的Memstore大小总和超过指定值时,flush该HRegion的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。
hbase.regionserver.global.memstore.upperLimit:0.4
hbase.regionserver.global.memstore.lowerLimit:0.38
即:当MemStore使用内存总量达到hbase.regionserver.global.memstore.upperLimit指定值时,将会有多个MemStores flush到文件中,MemStore flush 顺序是按照大小降序执行的,直到刷新到MemStore使用内存略小于lowerLimit