目标分割
莫一丞元
根特大学PhD在读
展开
-
u-net系列理解
概述实现语义分割输入数据,对于下图左边,我们需要分割人、建筑物、植物、路和背景,将其作为特定编码:那么对于输出数据,我们需要为每一中类别物体预测一个通道,这里需要预测5个通道:u-net网络结构编码部分是由很多 contraction block 组成,每个 block 对输入做 3×3 大的卷积,然后是 2×2 的最大池化(max pooling)。每个 block 输出的特征图数量是上一个 block 的两倍,可以保证网络高效地学习复杂的图像特征。对于解码部分,则包含很多 expans原创 2020-09-03 16:43:22 · 1070 阅读 · 0 评论 -
FCN个人理解
背景在图像分类任务上,现存网络有VGG、Resnet等,其中Resnet的出现使得计算机识别准确率超过人类自身。但是在目标检测和图像分割任务上准确率一直较低。现如今,在图像语义分割(对像素点进行分类)任务上,常见网络例如:FCN、SegNet、U-Net、SegNet、DeepLab、FC-Densenet E-Net 和 Link-Net、RefineNet、PSPNet、Mask-RCNN 以及一些半监督方法,例如 DecoupledNet 和 GAN-SS等。一般认为,发展到现在,基于深度学习的图像原创 2020-09-03 16:35:21 · 1596 阅读 · 0 评论