yolo系列
莫一丞元
根特大学PhD在读
展开
-
YOLT
简介YOLT是基于YOLO算法进行改进的高效卫星图像目标检测算法,主要针对高分辨率输入和密集小物体进行了优化。在YOLO的基础上提出了一种两阶段的算法架构,不仅可以适应多尺度的检测,同时达到了F1>0.8的结果,最后还探究了分辨率和物体大小对于检测的影响,并发现只需要五个像素的大小就可以实现目标检测。文章主要从深度学习对于卫星图像目标检测的缺陷出发,提出了改进的细粒度的目标检测网络结构。同时为了解决检测不变性的问题进行了大量的数据增强。卫星图像存在的挑战·空间范围较小:在卫星图像中,感兴趣原创 2020-09-05 10:35:36 · 1951 阅读 · 0 评论 -
yolo-v4
相对于前几期版本yolov4做出的改变:不增加计算损耗的trick(Bag of freebies):像素级数据增强(亮度、对比度、色彩、饱和度、噪声;随机尺度、裁剪、翻转、旋转)模拟目标遮挡(Random Erase、Cutout、Hide-and-seek、Grid-mask;Dropout、DropConnect、DropBlock)使用多张图混合增强(Mixup、CutMix)样本不平衡问题(困难样本挖掘(HEM、OHEM)、Focalloss)Oneho.原创 2020-09-04 21:43:35 · 588 阅读 · 0 评论 -
yolo-v3
背景YOLO是一种端到端的目标检测模型。YOLO算法的基本思想是:首先通过特征提取网络对输入特征提取特征,得到特定大小的特征图输出。输入图像分成grid cell,接着如果真实框中某个object的中心坐标落在某个grid cell中,那么就由该grid cell来预测该object。每个object有固定数量的bounding box,YOLO v3中有三个bounding box,使用逻辑回归确定用来预测的回归框。先分析一下yolo_v3上保留的东西:l “分而治之”,从yolo_v1开始,y原创 2020-09-04 21:42:40 · 370 阅读 · 0 评论 -
yolo-v2
背景新的YOLO版本论文全名叫“YOLO9000: Better, Faster, Stronger”,是作者rbg(RossGirshick)于2016年发表。主要有两个大方面的改进:第一,作者使用了一系列的方法对原来的YOLO多目标检测框架进行了改进,在保持原有速度的优势之下,精度上得以提升。VOC 2007数据集测试,67FPS下mAP达到76.8%,40FPS下mAP达到78.6%,基本上可以与Faster R-CNN和SSD一战。这一部分是本文主要关心的地方。第二,作者提出了一种目标分类与原创 2020-09-04 21:42:11 · 125 阅读 · 0 评论 -
yolo-v1
背景根据 YOLO官网 对它的解释,YOLO:Real-TimeObject Detection. You Only Look Once(YOLO)是一个最先进的实时的目标检测系统。这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO。 虽然目前版本还有一些硬伤,但是解决了目前基于DL检测中一个大痛点,就是速度问题。 其增强版本GPU中能跑45fps,简化版本155fps。下面为一个对比图:具原创 2020-09-04 21:41:23 · 435 阅读 · 0 评论 -
yolo-v3主干-darknet53 理解
网络主要是由一系列的1x1和3x3的卷积层组成(每个卷积层后都会跟一个BN层和一个LeakyReLU)层。网络中有53个convolutional layers,所以叫做Darknet-53(2 + 12 + 1 + 22 + 1 + 82 + 1 +82 + 1 + 4*2 + 1 = 53 ,不包括Residual中的卷积层,最后的Connected是全连接层也算卷积层,一共53个。下图就是Darknet-53的结构图,在右侧标注了一些信息方便理解。(卷积的strides默认为(1,1),paddi原创 2020-09-04 21:41:04 · 3467 阅读 · 0 评论