inception
莫一丞元
根特大学PhD在读
展开
-
Network In Network
NIN(network in network):该篇论文最大创新点有两个,一个是全局平均池化(Global Average Pooling,GAP),另一个是mlpconv层的提出。1 全局平均池化根本在于将最后卷积层的输出特征图,对于每一个特征图求全局平均,输出神经元个数对应特征图的通道数。(1) 有效减少参数数量(相比较全连接层)。(2) 减轻过拟合。(3) 更符合CNN特点,使feature map和类别信息产生直接映射,分类过程可理解性更强。(4) 求和取平均操作综合了空间原创 2020-09-05 10:35:02 · 153 阅读 · 0 评论 -
Inception系列理解
背景该篇主要介绍Inception系列,主要包含Inception V1、Inception V2、Inception V3、Inception V4、Inception-Resnet。Google家的Inception系列模型提出的初衷主要为了解决CNN分类模型的两个问题,其一是如何使得网络深度增加的同时能使得模型的分类性能随着增加,而非像简单的VGG网络那样达到一定深度后就陷入了性能饱和的困境(Resnet针对的也是此一问题);其二则是如何在保证分类网络分类准确率提升或保持不降的同时使得模型的计算开原创 2020-09-05 10:32:49 · 42751 阅读 · 3 评论 -
GoogLeNet理解
Googlenet和vgg是2014年imagenet竞赛的双雄,这两类模型结构有一个共同特点是go deeper。跟vgg不同的是,googlenet模型虽然 有22层,但大小却比alexnet和vgg都小很多,性能优越。文章提出获得高质量模型最保险的做法就是增加模型的深度(层数)或者是其宽度(层核或者神经元数),但是这里一般设计思路的情况下会出现两个缺陷(1.参数太多,容易过拟合,若训练数据集有限;2.网络越大计算复杂度越大,难以应用;3.网络越深,梯度越往后loss越容易消失,难以优化模型)。 go原创 2020-09-05 10:31:52 · 393 阅读 · 0 评论