超级简单的K线合成方法

使用python来合成K线数据


前言

量化程序中不免需要将行情数据合成自己所需要的周期级别,比如我有一堆周期为1分钟的原始数据,现在需要将它合成5分钟、10分钟、15分钟…等等周期级别的K线行情,那么需要怎么做呢?接下来直接进入主题!!!


提示:以下是本篇文章正文内容,下面案例可供参考

一、源数据

举个栗子

在这里插入图片描述

里面的元素分别代表着 时间、合约、开、高、低、收、成交量、持仓量

二、使用步骤

1.引入库

import pandas as pd

2.数据格式

将数据类型转成上面二维数组的格式类型,然后将它转成DataFrame格式,方法如下,当然如果你的源数据是存在CSV文件中的,可以将它直接读取成DataFrame格式,我这边是从数据库中取出来的所以就存成数组的格式了
# min1List ==> 源数据
# colums ==> 因为DataFrame是一种表格型数据结构,所以我们这边给它加一个列名,方便我们后面对它进行处理
colums = ['Time', 'Contract', 'Open', 'High', 'Low', 'Close', 'Volume', 'OpenInterest']
datas = pd.DataFrame(min1List, columns=colums)
# 下面这行是将时间转成datetime类型,因为我们需要将时间作为索引来使用,不转换格式在合成数据时会报错的
datas['Time'] = pd.to_datetime(datas['Time'])
datas.set_index('Time', inplace=True)

然后我们的datas输出结果如下图
在这里插入图片描述

2.合成

一切准备就绪,接下来我们合成数据,这里我是合成的15min的,如果想要合成别的也可以更改resample后的参数如’D’, ‘B’,‘30min’,参数网上有很多更详细的说明

def synthesis(datas):
    df15min = datas.resample('15min', closed='right',label='right').agg({
        'Contract': 'first',
        'Open': 'first',
        'High': 'max',
        'Low': 'min',
        'Close': 'last',
        'Volume': 'sum',
        'OpenInterest': 'sum'
    }).dropna()
    return df15min

好了这就完事了
在这里插入图片描述

还有一点要提的就是resample后closed和label这个参数,要取决于你合成的数据是要向前合成还是向后合成了,比如我将right改成left,那么结果又不一样了

在这里插入图片描述
好了大功告成,该入库的入库,该导出文件的导出文件

<think>好的,用户想了解基于物理原理的图像合成技术及实现方法。首先,我需要明确“基于物理原理”指的是什么。通常这涉及到模拟真实世界中的物理现象,比如光线传播、材质反射、流体动力学等。常见的应用可能包括光线追踪渲染、流体模拟、布料仿真等。 接下来,我应该从基本原理入手,比如几何光学、波动光学,或者更复杂的物理模型。然后,结合用户提供的引用内容,看看是否有相关的例子。例如,引用[2]提到超分辨率重建,虽然主要基于深度学习,但可能涉及物理成像模型,比如退化过程。而引用[3]提到的合成孔径成像,涉及声波或电磁波的物理特性,这属于物理原理的应用。 可能需要分几个部分来组织回答:首先介绍物理渲染技术,比如光线追踪和辐射度算法;然后讨论物理模拟,如流体和布料;接着结合超分中的物理模型;最后提到传感器物理特性的处理,比如合成孔径成像。同时,需要确保使用正确的LaTeX格式,如独立公式用$$...$$,行内用$...$。 用户提供的引用中,引用[3]提到地理信息与图像矩阵的对应,这可能涉及几何变换和物理坐标的映射,需要解释如何将物理坐标转换到图像像素。此外,超分重建中的退化模型可能包含模糊和噪声,这些也是物理过程的模拟。 还需要注意生成相关问题,可能需要包括算法实现、应用领域、挑战等方向的问题。例如,光线追踪与光栅化的区别,或流体模拟的数值方法。 最后,检查是否符合所有系统级指令,特别是LaTeX格式和引用标注的位置。确保回答结构清晰,分点明确,引用自然融入内容中。</think>基于物理原理的图像生成与处理技术主要通过数学建模和物理规律仿真来实现真实感图像合成。以下是核心技术分类及实现方法: ### 一、物理渲染技术 1. **光线追踪算法** 基于几何光学原理,模拟光线传播路径: $$ I(x,y) = \sum_{k=1}^{N} L_k \cdot BRDF(\theta_i,\phi_i;\theta_o,\phi_o) $$ 通过递归计算光线与物体表面的交互实现全局光照效果[^1] 2. **辐射度算法** 采用热辐射传递方程: $$ B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ij} $$ 适用于漫反射主导的场景渲染,如建筑可视化[^2] ### 二、物理现象仿真 | 仿真类型 | 控制方程 | 数值方法 | |---------|--------|---------| | 流体动力学 | Navier-Stokes方程 | 有限体积法 | | 布料运动 | 质点-弹簧模型 | Verlet积分 | | 破碎效果 | 连续介质力学 | 物质点法(MPM) | ### 三、传感器物理建模 1. **合成孔径成像** 采用波动方程逆向求解: $$ p(r,t) = \int \frac{A(\mathbf{r'})}{|\mathbf{r}-\mathbf{r'}|} \delta(t-\frac{2|\mathbf{r}-\mathbf{r'}|}{c})d\mathbf{r'} $$ 通过相位补偿实现超分辨率成像[^3] 2. **超分辨率重建** 构建退化模型: $$ \mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} $$ 其中$\mathbf{H}$包含光学模糊与运动模糊参数 ### 四、实现框架示例 ```python # 光线追踪核心伪代码 def ray_trace(ray, scene, depth): if depth > MAX_DEPTH: return BLACK intersection = find_nearest_hit(ray, scene) if not intersection: return background_color material = intersection.object.material color = compute_local_illumination(intersection) if material.is_reflective: reflected_ray = compute_reflection(ray, intersection) color += ray_trace(reflected_ray, scene, depth+1) return color ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值