小斌斌PAT刷题记录
1、卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出格式:
输出从 n 计算到 1 需要的步数。
输入样例:
3
输出样例:
5
【分析】
读入题目写出的n,之后用while循环语句反复判断n是否为1:
如果n为1,则退出循环
如果n不为1,判断n是奇数还是偶数,如果是偶数n/2,如果是奇数则令n为(3*n+1)/2
然后令计数器step+1,这样当退出循环时,step的值就是需要的答案。
#include <cstdio>
int main(){
int n,step=0;
scanf ("%d",&n);
while (n!=1){
if(n%2==0) n=n/2;
else n=(3*n+1)/2;
step++;
}
printf("%d",step);
return 0;
}
2、
[分析]
输入T,用以表示下面输入的数组组数,同时令Tcase表示当前是第几组数据,初始值为1。对每组数据,判断A+B是否大于C:
如果大于,则输出Case#%d:true,其中%d为当前的Tcase值
否则,输出Case#%d:false,其中%d为当前的Tcase值
其中我们发现题目给的范围,我们知道int型的整数数据范围是【-2^31, 2^31-1】,在最大值这里就会超过Int型的范围,另外俩个Int型的数据相机,最后是超过Int型的,因此在本题中需要用long long 来定义ABC变量,其输出格式必须是%lld,否则会报错
# include <cstdio>
int main(){
int T,Tcase=1;
scanf("%d",&T);
while(T--){
long long a ,b ,c;
scanf("%lld%lld%lld",&a,&b,&c);
if(a+b>c) {
printf("Case #%d: true\n",Tcase++);
}else {
printf("Case #%d: false\n",Tcase++);
}
}
return 0;
}