洛谷 P3193 [HNOI2008]GT考试 题解

题目链接

分析:

下用符号 S ( l , r ) S(l,r) S(l,r)表示字符串 S l S l + 1 ⋯ S r S_lS_{l + 1}\cdots S_r SlSl+1Sr,本文中讨论的字符串下标均从 1 1 1开始

f i , j f_{i,j} fi,j表示 X X X i i i位数字末尾 A A A最多匹配到第 j j j位数字(即 X ( i − j + 1 , i ) = A ( 1 , j ) X(i - j + 1,i) = A(1,j) X(ij+1,i)=A(1,j))的方案数,只要在转移时对每一个 i i i都不转移 j = m j = m j=m的情况(即每个前 i i i位的末 m m m位都不出现 A A A),最终得出的答案显然就是满足题意的。

对于转移,考虑每一个 f i , j f_{i,j} fi,j是从哪里转移来的。当前前 i i i位末尾匹配到第 j j j位,那么前 i − 1 i - 1 i1位末尾可以匹配到多少? 可以枚举前 i − 1 i - 1 i1位末尾能匹配到的位置 k k k,则我们需要计算出 g k , j g_{k,j} gk,j 表示添加一位使得从最大匹配到第 k k k位变成能匹配到第 j j j位的方案数,即求在 S ( 1 , k ) S(1,k) S(1,k)后添加一个数字使 S ( 1 , j ) S(1,j) S(1,j)成为其后缀的方案,显然可以用KMP预处理出来。(其实 m ⩽ 20 m \leqslant 20 m20可以直接暴力求)

g g g后转移方程就很好写了:
f i , j = ∑ k = 0 m − 1 ( f i − 1 , k × g k , j ) f_{i,j} = \sum_{k = 0}^{m - 1}(f_{i - 1,k} \times g_{k,j}) fi,j=k=0m1(fi1,k×gk,j)
注意到 g g g是定值,显然可以用矩阵快速幂优化,令
F n = [ f n , 0 f n , 1 ⋯ f n , m − 1 ] , G = [ g 0 , 0 g 0 , 1 ⋯ g 0 , m − 1 g 1 , 0 g 1 , 1 ⋯ g 1 , m − 1 ⋮ ⋮ ⋱ ⋮ g m − 1 , 0 g m − 1 , 1 ⋯ g m − 1 , m − 1 ] F_n = \left[\begin{matrix}f_{n,0}&f_{n,1} &\cdots&f_{n,m - 1}\end{matrix}\right],G = \left[\begin{matrix}g_{0,0} & g_{0,1} &\cdots & g_{0,m - 1} \\ g_{1,0} & g_{1,1} & \cdots &g_{1,m - 1} \\ \vdots & \vdots & \ddots & \vdots \\ g_{m - 1,0} & g_{m - 1,1} & \cdots & g_{m - 1,m - 1} \end{matrix}\right] Fn=[fn,0fn,1fn,m1],G=g0,0g1,0gm1,0g0,1g1,1gm1,1g0,m1g1,m1gm1,m1
则有
F n = F n − 1 G F_n = F_{n - 1}G Fn=Fn1G

F n = F 0 G n F_n = F_0G^n Fn=F0Gn
又因为 F 0 F_0 F0中只有 f 0 , 0 f_{0,0} f0,0 1 1 1,其它全部为 0 0 0,最终答案只需对 G n G^n Gn的第一行求和即可

Code:

#include <iostream>
#include <cstdio>
using namespace std;
const int maxm = 25;
int n,m,ans,mod,nxt[maxm],g[maxm][maxm];
char s[maxm];
struct matrix{
    int num[maxm][maxm];
    void clear(){//全部初始化成0
        for(int i = 0; i <= m; i ++)
            for(int j = 0; j <= m; j ++)
                num[i][j] = 0;
    }
}F,G;
int read(){
    int x = 0;
    char c = getchar();
    while(c < '0' || c > '9') c = getchar();
    while(c >= '0' && c <= '9') x = x * 10 + (c ^ 48),c = getchar();
    return x;
}
matrix basic(int x){//获取x * x的单位矩阵
    matrix t;
    t.clear();
    for(int i = 0; i < m; i ++) t.num[i][i] = 1;
    return t;
}
matrix mul(matrix x,matrix y){
    matrix d;
    d.clear();
    for(int i = 0; i < m; i ++)
        for(int j = 0; j < m; j ++)
            for(int k = 0; k < m; k ++)
                d.num[i][j] = (d.num[i][j] + x.num[i][k] * y.num[k][j] % mod) % mod;
    return d;
}
matrix qpow(matrix x,long long k){
    matrix t = x,d = basic(m);
    while(k){
        if(k & 1) d = mul(d,t);
        k >>= 1,t = mul(t,t);
    }
    return d;
}
void kmp(){
    int now = 0;
     for(int i = 2; i <= m; i ++){
         while(now && s[i] != s[now + 1]) now = nxt[now];
         if(s[i] == s[now + 1]) now ++;
         nxt[i] = now;
     }
     for(int i = 0; i < m; i ++){
         for(char j = '0'; j <= '9'; j ++){
             now = i;
             while(now && s[now + 1] != j) now = nxt[now];
             if(s[now + 1] == j) now ++;
             g[i][now] ++;
         }
     }
}
int main(){
    n = read(),m = read(),mod = read();
    scanf("%s",s + 1);
    kmp();
    for(int i = 0; i < m; i ++)
        for(int j = 0; j < m; j ++)
            G.num[i][j] = g[i][j];
    G = qpow(G,n);
    for(int i = 0; i < m; i ++) ans = (ans + G.num[0][i]) % mod;
    cout << ans << endl;
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值