限制微表情识别准确性的两个方面:
(1) 面部小局部区域微表情的存在
(2) 可用数据集大小的局限性(目前许多微表情数据集都远小于喂入网络的其他数据集,这可能会导致眼中的过拟合问题)
为此,本文提出了一种微注意力与残差网络想结合的新的注意力机制。
(此种整合可以减少参数数量)
特征工程的方法更适合离线,端到端的方法更适合快速、实时、线上的场合。
(本文运用的是基于深度学习思想的用于微表情识别的端到端网络,在训练上实行了迁移学习减轻过拟合)
另:迁移学习对于使用源领域的知识来帮助目标领域的学习非常有用,尤其当目标规模很大时数据集太小而无法训练网络时。(解决了上面(2)的局限性)
一、方法
总述:
(1) 使用ResNet网络作为基本架构;
(2) 每个residual block中集成了一个新的微注意单元(专注于表现出微表情的面部区域);
(3) 使用迁移学习训练网络(减轻过拟合风险)。
1.ResNet
本文设计了十个残差块,每个块添加一个attention单元
一个残差块如下图所示:
2. Micro-Attention Unit(微注意单元)
设计此单元时要考虑三个因素:
a.注意单元可训练;
b.不会增加明显的参数;
c.学习注意单