- 博客(18)
- 收藏
- 关注
原创 HPC计算集群Slurm使用
srun [options] program命令属于交互式提交作业,有屏幕输出,但容易受网络波动影响,断网或关闭窗口会导致作业中断。如果不关心节点和时间限制,可简写为srun -N 1 -n 4 hostname。使用 srun 命令,配合 -p 分区名 参数,以及 -N 节点数 -n 核心数 进行提交。mixed:混合,节点在运行作业,但有些空闲 CPU 核,可接受新作业。-w cn[01-02] 指定提交作业到cn01,cn02节点。-x cn[01-02] 排除cn01、cn02节点。
2024-09-23 16:19:43 766
原创 激活函数汇总简介
激活函数(Activation Function),就是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端。使用非线性的激活函数将非线性特性引入到到网络中。激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。一个节点的激活函数(Activation Function)定义了该节点在给定的输入或输入的集合下的输出。神经网络中的激活函数用来提升网络的非线性(只有非线性的激活函数才允许网络计算非平凡问题),以增强网络的表征能力。对激
2024-09-12 16:18:56 641
原创 深度学习视听抑郁识别综述笔记:Deep learning for depression recognition with audiovisual cues: A review
随着工作和生活节奏的加快,人们面临的压力越来越大,这就增加了患抑郁症的概率。然而,由于全球医患比例严重失衡,很多患者可能无法得到及时诊断。一个很有希望的进展是生理和心理学研究发现抑郁症患者和健康人在言语和面部表情上有一些差异。因此,为了改善当前的医疗保健,深度学习(DL)已被用于从音频和视频中提取抑郁线索的表示,以用于自动抑郁检测。为了对这些研究进行分类和总结,我们介绍了抑郁症自动评估的数据库和客观指标。我们还回顾了用于抑郁症自动检测的DL方法,以从音频和视频中提取抑郁症的表示。最后,我们讨论了与使用DL。
2024-09-12 16:10:58 1249
原创 论文笔记:SFTNet A microexpression-based method for depression detection
背景与目的:抑郁症是一种典型的精神疾病,早期筛查可有效预防病情的加重。许多研究发现,抑郁症患者的表情与其他被试的表情不同,微表情已被用于精神疾病的临床检测。然而,基于微表情的抑郁症自动检测方法很少。方法:建立一个包含156名受试者(病例组76名,对照组80名)的新数据集。所有的数据都是在一个新的情绪刺激实验和医患对话的背景下收集的。我们首先分析了病例组和对照组面部表情的平均出现次数(ANO)和平均持续时间(AD)。
2024-09-09 12:52:17 1087
原创 抑郁识别笔记_Guo et al_2021_Deep Neural Networks for Depression Recognition Based on 2D and 3D Facial
随着全球人口的增长,抑郁症患者的比例沿着迅速增加。抑郁症是目前最普遍的心理健康障碍。有效的抑郁症识别系统对于早期发现潜在的抑郁症风险尤为重要。与抑郁症相关的数据集在评估抑郁症或潜在抑郁症风险检测系统时也至关重要。由于临床数据的敏感性,此类数据集的可用性和规模是稀缺的。据我们所知,中国人群中广泛实用的抑郁症数据集很少。在这项研究中,我们首先通过要求受试者执行五个情绪诱导任务来创建一个大规模的数据集。在每个任务之后,通过Kinect收集受试者的音频和视频,包括面部表情的3D信息(深度信息)。
2024-09-09 12:40:36 1827
原创 Cervical Glandular Cell Detection from Whole Slide Image with Out-Of-Distribution Data 笔记
=宫颈腺细胞(GC)==检测是计算机辅助诊断宫颈腺癌筛查的关键步骤。以鳞状细胞为主的宫颈涂片中GCs的准确识别具有挑战性。整个涂片广泛存在out - distribution (OOD)数据,导致机器学习系统用于GC检测的可靠性下降。out - distribution (OOD) 标签以外的样本尽管SOTA深度学习模型可以在预选感兴趣的区域优于病理学家,但在面对如此大像素的整张幻灯片图像时,仍无法解决高概率的大规模假阳性(FP)预测。
2024-05-29 20:47:46 893
原创 Computer-assisted mitotic count using a deep learning–based algorithm improves interobserver repro
作者指出需要人工智能辅助病理学家进行分类,来确保可靠性有丝分裂计数(MC)是预测恶性肿瘤的重要组织学参数。然而,由于在选择感兴趣区域(MC-ROI)和识别或分类有丝分裂图(MF)方面存在困难,它在观察者之间和观察者之间存在差异。人工智能领域的最新进展使得高性能算法的发展成为可能,从而提高MC的标准化。由于算法预测并非完美无缺,病理学家的计算机辅助审查可能确保可靠性。在本研究中,
2024-05-29 20:46:10 897
原创 Computerized Calculation of Mitotic Count Distribution in Canine Cutaneous .. 笔记
有丝分裂计数(MC)是分级犬皮肤肥大细胞肿瘤(ccMCTs)的一个重要因素,它是在10个具有最高有丝分裂活性的连续高倍视野中测定的。然而,病理学家之间的区域选择存在差异。本研究分析了CCMCT中MC的分布和区域选择对MC的影响。两位病理学家独立注释了28个ccMCT(基本事实)的整个幻灯片图像中的所有有丝分裂图像。自动图像分析用于检查整个肿瘤切片区域中MC的基本ground truth分布,并与11位病理学家的手动MC进行比较。计算机分析显示不同肿瘤区域的MC具有高度的变异性。
2024-05-29 20:45:08 881
原创 A completely annotated whole slide image dataset of canine breast cancer to aid human breast..笔记
犬类乳腺癌(CMC)已被用作研究人类乳腺癌发病机制的模型,通常采用相同的分级方案来评估两者的肿瘤恶性程度。这个分级方案的一个关键组成部分是有丝分裂图(MF)的密度。目前公开的人类乳腺癌数据集仅为整个幻灯片图像(WSIs)的一小部分提供注释。本文提出的CMC数据集,在21个WSIs图像上进行了有丝分裂图的完整注释。为此,病理学家筛选了所有WSIs,以寻找潜在的MF和具有相似外观的结构。第二个专家盲目地分配标签,对于不匹配的标签,第三个专家分配最终的标签。此外,我们使用机器学习来识别之前未检测到的MF。
2024-05-29 20:44:03 380
原创 NuCLS: A scalable crowdsourcing approach and dataset for nucleus classification and segmentation..笔记
细胞和组织结构的高分辨率映射为开发计算病理学的可解释机器学习模型提供了基础。深度学习算法可以为训练和验证提供大量标记实例的精确映射。由于病理学家需要花费大量的时间和精力,生成足够数量的高质量标签已经成为计算病理学的一个关键障碍。在这篇论文中,我们描述了一种吸引医科学生和病理学家的方法,用于生成一个包含超过220,000个乳腺癌细胞核注释的数据集。我们展示了由弱算法生成的建议注释如何提高非专家生成的注释的准确性,并可以为训练分割算法产生有用的数据,而无需费力的手工跟踪。
2024-05-29 20:42:59 668
翻译 RECASNET: IMPROVING CONSISTENCY WITHIN THE TWO-STAGE MITOSIS DETECTION FRAMEWORK 笔记
有丝分裂计数(Mitotic count, MC)是癌症诊断和分级的重要组织学参数,但手工从全切片组织病理学数字图像中获取MC的过程非常耗时且容易出错。因此,深度学习模型被提出了推动这一过程。现有的方法采用两阶段的方法:检测阶段确定潜在有丝分裂细胞的位置,分类阶段提高预测的可信度。但是,由于检测阶段的预测质量较差,以及两个阶段之间的训练数据分布不匹配,上面这种管道方法会导致分类阶段的不一致。在本研究提出了一种改进级联网络(ReCasNet),它是一种增强的深度学习管道,通过三种改进来缓解上述问题。首先,
2022-10-02 23:01:04 423 1
原创 Kaggle服务器初体验记录
Kaggle给每个用户提供了以下资源,自己可使用私人数据集空间100G,CPU使用时间不限,GPU每周使用时间为41小时,TPUv3-8使用时间为20小时;最后点击两次Save,然后点击左下角图标,弹出如下浮动窗口,并点击浮动窗口最上面的一行后面三个点弹出另一个浮动窗口,并点击Open Logs in Viewer。这里可以选择是否保存输出(每次如果没保存,output中的文件会被清空),同时可以选择是否使用GPU,这个一般会和自己调试使用的设备相同。下面是一种保存自己安装的模块的方法,不太好用。
2022-09-19 19:42:18 4134 1
翻译 A large-scale dataset for mitotic fgure assessment on whole slide images of canine cutaneous.. 笔记
该文章给出了一个大规模的显微镜细胞注释数据集。数据集包括32张犬皮肤肥大细胞肿瘤的全切片(WSI)图像,包含不同级别的病例。切片注释包括:有丝分裂、瘤肥大细胞、炎性粒细胞和类似有丝分裂图。以及一个算法辅助的数据集,包含可能缺失的核分裂图。总共有262,481条注释,其中44,880条代表有丝分裂图。文章已经在RetinaNet上实现,细胞分类网络方面人工标记和算法辅助数据集的F1-Scores分别为0.786和0.820。
2022-09-09 22:21:30 483
翻译 A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology笔记
A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology笔记
2022-08-28 11:08:17 406
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人