【应用随机过程】04. 马尔可夫链的平稳分布

本文深入探讨马尔可夫链的平稳分布,解释了严平稳过程的概念,展示了如何判断马尔可夫链具有平稳分布。同时阐述了不可约马尔可夫链的性质,包括唯一平稳分布的条件。此外,还讨论了极限分布的存在性、依赖性和计算方法,以及在特殊情况下极限分布与平稳分布的关系。最后,文章提到了状态空间的分解,特别是常返状态的性质及其在马尔可夫链分析中的作用。
摘要由CSDN通过智能技术生成

第四讲 马尔可夫链的平稳分布

一、平稳分布

Part 1:平稳分布

严平稳过程:设 { X n : n ≥ 0 } \{X_n:n\geq0\} { Xn:n0} 是一个随机过程,如果对任意 n ≥ 0 n\geq0 n0 m ≥ 1 m\geq1 m1 ,有
( X m , X m + 1 , ⋯   , X m + n ) = d ( X 0 , X 1 , ⋯   , X n )   , \left(X_m,X_{m+1},\cdots,X_{m+n}\right)\xlongequal{d}\left(X_0,X_{1},\cdots,X_{n}\right) \ , (Xm,Xm+1,,Xm+n)d (X0,X1,,Xn) ,
则称 { X n : n ≥ 0 } \{X_n:n\geq0\} { Xn:n0} 是严平稳过程。即随机过程的任意有限维分布不依赖于时间。

{ X n } \{X_n\} { Xn} 是时齐的马尔可夫链,如果 { X n } \{X_n\} { Xn} 是严平稳过程,则称 { X n } \{X_n\} { Xn} 具有平稳分布。这里我们只需考虑初始分布和一步之后的分布相同的情况,因为由此可以推出任意步之后的分布都和初始分布相同。

设初始分布为 π = ( π 1 , π 2 , ⋯   , π N ) \pi=(\pi_1,\pi_2,\cdots,\pi_N) π=(π1,π2,,πN) ,一步转移矩阵为 P = ( p i j ) N × N P=(p_{ij})_{N\times N} P=(pij)N×N ,则一步之后的分布为 π P \pi P πP 。因此 { X n } \{X_n\} { Xn} 具有平稳分布当且仅当 π = π P \pi=\pi P π=πP ,此时我们称 π \pi π { X n } \{X_n\} { Xn} 的平稳分布。

{ X n } \{X_n\} { Xn} 具有平稳分布,如果我们想要求出平稳分布,需要求解下列具有约束条件的线性方程组:
{ ∑ i = 1 N π i p i j = π j   , j = 1 , 2 , ⋯   , N   , ∑ i = 1 N π i = 1   , π i ≥ 0   , i = 1 , 2 , ⋯   , N   . \left\{\begin{array}{l} \displaystyle\sum_{i=1}^N\pi_ip_{ij=\pi_j} \ , \quad j=1,2,\cdots,N \ , \\ \displaystyle\sum_{i=1}^N\pi_i=1 \ , \\ \pi_i\geq0 \ , \quad i=1,2,\cdots,N \ . \end{array} \right. i=1Nπipij=πj ,j=1,2,,N ,i=1Nπi=1 ,πi0 ,i=1,2,,N .
注意,马尔可夫链的平稳分布不一定是唯一的,与上述方程组的解的情况有关。

Part 2:不可约马尔可夫链的性质

这里我们就列出几个定理而不给出证明了。

定理:不可约马尔可夫链的性质

  1. 如果 { X n } \{X_n\} { Xn} 不可约非周期,则 { X n } \{X_n\} { Xn} 存在平稳分布当且仅当 { X n } \{X_n\} { Xn} 正常返,此时平稳分布 π \pi π 唯一且 π i = 1 μ i \pi_i=\dfrac1{\mu_i} πi=μi1
  2. 如果非周期不可约正常返,即 { X n } \{X_n\} { Xn} 遍历,则对任何 i , j ∈ I i,j\in I i,jI ,都有 lim ⁡ n → ∞ p i j ( n ) = π j \displaystyle\lim_{n\to\infty}p_{ij}^{(n)}=\pi_j nlimpij(n)=πj
  3. 如果状态空间 I I I 有限,则 { X n } \{X_n\} { Xn} 一定正常返。

定理:常返和暂留的其他性质

  1. 如果状态空间 I I I 有限,则状态 i i i 常返当且仅当 i i i 的互达等价类是闭集,并且此时 i i i 是正常返。
  2. 如果 j j j 暂留或零常返,则对任意 i i i 都有 lim ⁡ n → ∞ p i j ( n ) = 0 \displaystyle\lim_{n\to\infty}p_{ij}^{(n)}=0 nlimpij(n)=0

推论:正常返和零常返的等价描述

  1. 状态 i i i 正常返当且仅当 lim ⁡ n → ∞ 1 n ∑ k = 1 n p i i ( k ) = 1 μ j > 0 \displaystyle\lim_{n\to\infty}\frac1n\sum_{k=1}^np_{ii}^{(k)}=\frac1{\mu_j}>0 nlim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值