【时间序列分析】12. ARMA(1,1)模型

A R M A ( 1 ,   1 ) {\rm ARMA}(1,\,1) ARMA(1,1) 模型

模型设定与平稳解

X t = a X t − 1 + ε t + b ε t − 1 X_t=aX_{t-1}+\varepsilon_t+b\varepsilon_{t-1} Xt=aXt1+εt+bεt1

特征多项式 A ( z ) = 1 − a z A(z)=1-az A(z)=1az B ( z ) = 1 + b z B(z)=1+bz B(z)=1+bz

由泰勒级数计算 Wold 系数:
Φ ( z ) = B ( z ) A ( z ) = 1 + b z 1 − a z = ( 1 + b z ) ∑ j = 0 ∞ a j z j = 1 + ( a + b ) ∑ j = 1 ∞ a j − 1 z j \Phi(z)=\frac{B(z)}{A(z)}=\frac{1+bz}{1-az}=(1+bz)\sum_{j=0}^\infty a^jz^j=1+(a+b)\sum_{j=1}^\infty a^{j-1}z^j Φ(z)=A(z)B(z)=1az1+bz=(1+bz)j=0ajzj=1+(a+b)j=1aj1zj
由 Wold 系数递推公式计算 Wold 系数:
ψ 0 = 1   ,      ψ 1 = b + a ψ 1 − 1 = b + a ψ 0 = a + b   , \psi_0=1 \ , \ \ \ \ \psi_1=b+a\psi_{1-1}=b+a\psi_0=a+b \ , ψ0=1 ,    ψ1=b+aψ11=b+aψ0=a+b ,

ψ j = a ψ j − 1 = ⋯ = a j − 1 ψ 1 = a j − 1 ( a + b )   ,      j = 2 , 3 , 4 , ⋯ \psi_j=a\psi_{j-1}=\cdots=a^{j-1}\psi_1=a^{j-1}(a+b) \ , \ \ \ \ j=2,3,4,\cdots ψj=aψj1==aj1ψ1=aj1(a+b) ,    j=2,3,4,

A R M A ( 1 ,   1 ) {\rm ARMA}(1,\,1) ARMA(1,1) 模型的平稳解:
X t = ε t + ( a + b ) ∑ j = 0 ∞ a j − 1 ε t − j   . X_t=\varepsilon_t+(a+b)\sum_{j=0}^\infty a^{j-1}\varepsilon_{t-j} \ . Xt=εt+(a+b)j=0aj1εtj .

自协方差函数

由 Wold 系数计算自协方差函数:
γ 0 = σ 2 ∑ j = 0 ∞ ψ j 2 = σ 2 [ 1 + ∑ j = 1 ∞ ( a + b ) 2 a 2 ( j − 1 ) ] = σ 2 [ 1 + ( a + b ) 2 1 − a 2 ] = σ 2 1 + 2 a b + b 2 1 − a 2   . \begin{aligned} \gamma_0=\sigma^2\sum_{j=0}^\infty\psi_j^2 &=\sigma^2\left[1+\sum_{j=1}^\infty(a+b) ^2a^{2(j-1)}\right] \\ &=\sigma^2\left[1+\frac{(a+b)^2}{1-a^2}\right] \\ &=\sigma^2\frac{1+2ab+b^2}{1-a^2} \ . \end{aligned} γ0=σ2j=0ψj2=σ2[1+j=1(a+b)2a2(j1)]=σ2[1+1a2(a+b)2]=σ21a21+2ab+b2 .

γ 1 = σ 2 ∑ j = 0 ∞ ψ j ψ j + 1 = σ 2 [ ψ 1 + ∑ j = 1 ∞ a ( a + b ) 2 a 2 ( j − 1 ) ] = σ 2 [ a + b + a ( a + b ) 2 1 − a 2 ] = σ 2 ( a + b ) ( 1 + a b ) 1 − a 2   . \begin{aligned} \gamma_1=\sigma^2\sum_{j=0}^\infty\psi_j\psi_{j+1} &=\sigma^2\left[\psi_1+\sum_{j=1}^\infty a(a+b) ^2a^{2(j-1)}\right] \\ &=\sigma^2\left[a+b+a\frac{(a+b)^2}{1-a^2}\right] \\ &=\sigma^2\frac{(a+b)(1+ab)}{1-a^2} \ . \end{aligned}

  • 10
    点赞
  • 74
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ARMA模型是一种在时间序列分析中常用的模型,它由自回归(AR)和滑动平均(MA)两个部分组成。AR部分表示当前值与过去值之间的线性关系,而MA部分表示当前值与随机误差项之间的线性关系。ARMA模型可以用来预测未来时间序列的值。 建立ARMA模型的过程包括以下几个步骤: 1. 平稳性检验:首先需要确认时间序列是否满足平稳性条件。可以通过绘制时序图和使用统计量(如自相关函数)来判断序列是否平稳[3]。 2. 确定阶数:确定AR和MA的阶数,即p和q。可以使用自相关函数和偏自相关函数来帮助确定合适的阶数。 3. 参数估计:使用最小二乘法或最大似然估计来估计模型的参数。 4. 模型检验:对模型进行检验,包括检查残差的自相关性、正态性和异方差性等。 5. 模型预测:使用已建立的ARMA模型来进行时间序列的预测。 在实际应用中,可以使用R语言中的TSA包来进行ARMA模型的建模和预测。要建立ARMA模型,首先需要确认时间序列的平稳性,可以绘制时序图来观察序列的趋势和波动。接下来,可以使用自相关函数来确定AR和MA的阶数。然后,通过最小二乘法或最大似然估计来估计模型的参数。最后,对模型进行检验,包括检查残差的自相关性和正态性等。完成模型检验后,可以使用已建立的ARMA模型来进行时间序列的预测。 总结起来,建立ARMA模型的过程包括平稳性检验、阶数的确定、参数估计、模型检验和模型预测。通过这一过程,我们可以建立一个合适的ARMA模型来预测时间序列的未来值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值