目标检测目标框回归函数对比

本文详细对比了目标检测中常用的IOU、L1&L2&SmoothL1、GIOU、DIOU和CIOU损失函数,分析了各自的优缺点。IOU具有尺度不变性,但当预测框与真实框不相交时梯度消失。L1、L2和SmoothL1在不同场景下各有优劣。GIOU、DIOU和CIOU试图解决IOU的局限,尤其是CIOU考虑了长宽比,但特定情况下仍可能退化为IOU。
摘要由CSDN通过智能技术生成

本文主要介绍了IOU、L1&L2&SmoothL1、GIOU、DIOU、CIOU损失函数,并说明了各损失函数的优缺点。

1.IOU

Iou的就是交并比,预测框和真实框相交区域面积和合并区域面积的比值,计算公式如下,Iou作为损失函数的时候只要将其对数值输出就好了。
在这里插入图片描述

优点:
1.IOU作为距离时(比如: L I O U = 1 − I O U L_{IOU}=1-IOU LI

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值