学术速运|药物毒性预测中的人工智能:最新进展、挑战和未来展望

​题目:Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives

文献来源:J. Chem. Inf. Model. 2023, 63, 2628−2643

代码:无

简介:毒性预测是药物发现过程中的一个关键步骤,它有助于识别和优先考虑具有最大潜力的化合物,同时也降低了昂贵的晚期失败的风险。据估计,超过30%的候选药物由于毒性而被丢弃。最近,人工智能(AI)已被用于改进药物毒性预测,因为它提供了更准确和有效的方法,在新化合物的人体临床试验测试之前识别其潜在的毒性作用,从而节省时间和金钱。在这篇综述中,作者概述了基于人工智能的药物毒性预测的最新进展,包括各种机器学习算法和深度学习架构的使用,6个主要毒性特性和Tox21检测终点。此外,作者还为研究界提供了一份公共数据源和有用的毒性预测工具的列表,并强调了为提高模型性能所必须解决的挑战。最后,他们讨论了基于人工智能的药物毒性预测的未来前景。本综述有助于研究人员理解毒性预测,并为药物发现的新方法铺平道路。

主要内容:

-------------------------------------------

欢迎点赞收藏转发!

下次见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值