2024车联网产业十大趋势:“技术、场景、运营”分层次持续迭代演进,“可信数据”和“普惠服务”实现商业运营闭环...

609cfeb9574a5d9a8e3f1884791c7d20.png

2021年1月笔者展望过车联网产业十大发展趋势:车联网规模建设时代来临,“两率提升”是关键;5G+V2X逐步落地,“量产”是关键;从安全类和效率类业务到协同类业务演进,“协同”是关键;车联网技术进一步验证和完善,“安全”是关键;车联网跨城市区域合作发展,“开放”是关键;车联网赋能自动驾驶典型场景落地,“商用车”是关键;车联网赋能智能交通实现深度融合创新,“融合”是关键;车联网赋能智慧出行探索杀手级应用,“有效感知”是关键;车联网创新商业和运营模式探索,“闭环”是关键;车联网数据开放模式探索,“规则”是关键。

以上很多工作,依然在持续推进,同时也看到车联网产业经过近几年的发展,取得了长足进步,但也面临诸多挑战。展望未来,相信车联网产业依托于自身的价值,必将开花结果。迈入2024年,笔者再次展望未来车联网产业发展十大趋势。不准确之处,敬请谅解。

车联网产业发展经过这几年各方的持续推进和探索,在全国各地做了大量技术验证和示范及先导应用,当下如何开展车联网运营服务,已经成为车联网产业可持续性发展的重要一环。展望未来,车联网产业将从“技术、场景、运营”分层次持续迭代演进,通过“可信数据”和“普惠服务”实现商业运营闭环。

技术趋势方面,①车路云一体化系统架构下的内涵和外延拓展;②多模网络支持高可靠、低时延和大连接车联网服务;③车联网计算、感知和人工智能深度融合;④车联网数字孪生底座和仿真测试应用加速技术突破进程;

场景趋势方面,⑤车联网的车端应用场景体现在赋能L2/L2+、赋能L3/L4、车路云一体化三个方向;⑥车联网的交通和城市端场景体现在赋能交通管理、赋能交通出行和物流运输、赋能智慧城市三个方向;

运营趋势方面,⑦“可信数据”是未来车联网运营的核心内容;⑧单项车联网业务做到极致体验,实现规模应用,提供“普惠服务”;

其它趋势方面,⑨车路云一体化安全体系保障车联网应用;⑩车联网产业发展需要科学的顶层设计和评价体系。

文 | 吴冬升

全文16000,预计阅读30分钟

▎(一)技术趋势一:

车路云一体化系统架构下的内涵和外延拓展

车路云一体化指的是通过新一代信息与通信技术将人、车、路、云的物理空间、信息空间融合为一体,基于系统协同感知、决策与控制,实现智能网联汽车交通系统安全、节能、舒适及高效运行的信息物理系统。

在车路云一体化整体架构下,包括的内涵和外延都在拓展:

(1)分层建设逻辑协同的云控基础平台

云控平台是车路云一体化系统各组成部分的核心要素。云控基础平台与云控应用平台分层解耦,从而保证云控基础平台的开放性,对支撑充分竞争性、差异性的云控应用至关重要。

云控基础平台通常由边缘云、区域云与中心云三级云组成,形成逻辑协同、物理分散的架构。其中边缘云位于车辆附近的边缘计算节点上,负责处理实时的车载数据和边缘计算任务;区域云位于边缘云的上一层,收集来自多个边缘云的数据,并进行更复杂的数据处理和分析;中心云位于整个智能网联汽车云控平台的核心和最高层的云计算资源集中地,负责收集来自各个区域云和边缘云的数据,并进行全局的数据分析、建模和决策。

云控基础平台本身也将分层建设,“国家级—区域级—城市级—区县级”。要充分考虑①云控基础平台和云控应用平台之间的信息交互标准,以及②各级云控基础平台之间的信息交互标准,③云控基础平台和MEC、RSU、OBU等设备信息交互标准,④云控基础平台和第三方平台(交管平台、交运平台、车企云平台、出行平台、物流运输平台、停车平台等)之间信息交互标准。

(2)统筹布局车联网算力网络,实现算网一体共生发展

推进车联网的网络和计算两大方向融合,最终实现算网一体共生发展。端边侧算力即包括智能网联汽车上的算力资源,也包括路端/基站端的算力资源,加上各级云侧算力,形成一张车联网算力网络。车联网算力网络在计算效率、可靠性、时延、安全性、隔离度上都将深度耦合,因此未来承载车联网业务的主体由“云网融合”向“算网一体”演变。

如何设计和建设这张算力网络,至关重要。需要统筹布局端边侧算力和各级云侧算力,综合考虑算力资源大小、异构算力需求(CPU+GPU+DPU等混合)、算力跨域协同调度等,构建多级协同算力,提供可信开放的算力业务服务。一方面能满足车和交通/城市的特定算力要求,一方面避免算力资源浪费。

(3)“人/货-车-路-网-云-图/定位-安全”提供广义车联网服务

车路云一体化的外延非常宽泛,“人/货-车-路-网-云-图/定位-安全”等都是在广义车联网范畴,可以提供信息娱乐服务、安全服务、效率服务和自动驾驶服务等多种业务服务。以车联网安全服务为例,涉及到的不仅仅是车本身,还可以包括路面上其它交通参与者,例如行人、非机动车等。

▎(二)技术趋势二:

多模网络支持高可靠、低时延和大连接车联网服务

ITS America提出推动在全美33万个信号交叉口,5年内实现10万个交叉口安装RSU以及配套基础设施和系统,10年内实现25万个交叉口安装RSU以及配套基础设施和系统,8-13年全部车辆装配C-V2X设备。建设规模化C-V2X网络,甚至是一张全国性的C-V2X网络,是非常有价值的。

车联网需要的是一张能提供高可靠、低时延、大连接的网络,这与5G网络的三大性能高度重叠。但5G网络三大特性并不是同时满足的,因此车联网网络在实际组网过程中,会是多模网络形态,如图1所示。

267560af57d20ca67729c5a6df9dda42.png

图1 车联网多模网络

(1)多模网络提供“车-车-路-云”互相之间的有效连接

车与车之间主要通过LTE-V2X通信,未来还可以通过NR-V2X通信,二者是延续而非替代关系;车与路之间可以通过LTE-V2X/NR-V2X/4G/5G,甚至是ETC2.0、射频等各种通信方式;车与云,可以通过4G和5G通信,未来还可以是6G和卫星通信等;路与云,可以通过光纤和5G等通信。

以高可靠性为例,LTE-V2X直连通信,NR-V2X的单播、组播、HARQ等特性,以及5G的uRLLC、切片、QoS 等技术,都可以保证车联网业务的高可靠。

(2)多模网络提供各种类型业务场景的可靠保障

针对不同类型的业务场景,可以采用不同的通信方式予以保障,例如5G大网可以支持信息娱乐服务、车内标牌、浮动车数据采集等业务(500ms);5G专网可以支持远程遥控驾驶(上行200ms,下行50ms);LTE-V2X可以支持一阶段(100ms)和二阶段(50ms)各类业务场景。网络性能将持续优化和提升。

(3)多模网络向一网多能方向发展

以5G-A通信感知融合为例,向行业一网多能方向发展。通信网络在满足通信业务要求的前提下将使能感知业务,一方面支持更丰富应用业务提高网络资源的利用效率,另一方面可以通过感知为业务智能和网络智能提供基础支撑能力。

通信感知一体化通过空口及协议联合设计、软硬件设备共享,使用相同频谱资源实现通信功能与感知功能的融合共生,使得无线网络在进行数据通信的同时,还能通过分析无线通信信号的直射、反射、散射,获得对目标对象或环境信息的感知,实现定位、测距、测速、成像、检测、识别、环境重构等功能,为提升频谱利用率和设备复用率、提升通信网络价值带来一个全新的维度。

▎(三)技术趋势三:

车联网计算、感知和人工智能深度融合

车联网要发挥价值,除了提供可靠网络外,还应能提供丰富的应用场景。每个应用场景的背后,人工智能算法是最重要的支撑工具,例如交通安全预警算法、路侧融合感知算法、车路云协作算法、交通指标算法、交通事件检测算法等。

(1)大模型时代下,构建车联网行业大模型和车联网细分场景模型

人工智能技术进入第三波浪潮,AI大模型驱动算力、数据和网络流量爆发式增长。未来十年将有100倍算力需求,2030年将出现百万亿参数大模型,AI集群进入100E时代;未来十年将有23倍数据增长,2028年将有超50%内容由AI创造;未来十年将有100倍网络带宽增长。

车联网AIGC大模型将基于公开数据集数据,到行业通用数据,再到行业核心数据进行训练和推理,从而基于基础模型(NLP、视觉、多模态等)进一步构建出车联网行业大模型,再进一步构建车联网细分场景模型。

(2)车联网融合感知算法从后融合向特征级融合和前融合演进

车联网路侧传感器是信息收集和获取的最前端,是整个车联网系统的基石。在硬件设备方面,多传感器一体化设备越来越普遍,同时开始采用功能和性能更强大的单一传感器,例如4D毫米波雷达等。

在软件方面,车联网融合感知算法从后融合向特征级融合和前融合演进。感知可粗略分为获取数据、提取特征、完成感知任务三个环节,按照信息融合发生的环节感知技术可以分为前融合、特征融合以及后融合。后融合即目标级融合,指单个传感器分别完成感知任务后再进行融合,可理解为有多少个传感器即需要几套感知算法;特征级融合是指对传感器采集的原始数据分别进行特征提取,再进行融合,进而实现对应的感知任务;前融合即数据级融合,指对不同传感器的原始数据进行空间和时间上的对齐,再从融合数据中提取特征向量进行识别,整套系统仅需要一套感知算法。

(3)跨域融合感知算法提升感知性能

车联网路侧传感器在满足单点位感知性能后,继续攻关车-路数据融合感知、路端跨域感知共享等感知融合问题。当前车端感知算法的迭代升级,例如BEV+Transfomer,也给路侧感知带来了新思路,将路侧感知系统算法与车侧感知协同算法架构趋同融合。

以路侧BEV实时建图算法为例,可通过安装在道路两侧的相机等传感器来实时构建所覆盖道路的地图,从而为车端提供更新更及时、更轻量化的路口地图。路侧BEV实时建图可以在复杂路口场景,通过长期定点观察,多轮检测来理解交通道路场景,及时发现路口内要素变化,提高建图置信度,构建更安全可靠的地图;相比车端感知设备,路侧相机等传感器挂在高杆上,视野好遮挡少

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值