一文详解自动驾驶关键技术

本文来自机械工业出版社出版的《智慧城市与智能网联汽车,融合创新发展之路》一书。继文章《一文详解智能网联发展阶段和关键技术》《智能网联应用场景、应用实践和发展趋势》,本篇介绍自动驾驶关键技术。

自动驾驶基本过程分为三部分:感知、决策、控制。其关键技术为自动驾驶的软件算法与模型,通过融合各个传感器的数据,利用不同的算法和支撑软件计算得到所需的自动驾驶方案。

自动驾驶中的环境感知指对于环境的场景理解能力,例如障碍物的类型、道路标志及标线、行车车辆的检测、交通信息等数据的分类。定位是对感知结果的后处理,通过定位功能帮助车辆了解其相对于所处环境的位置。环境感知需要通过多传感器获取大量的周围环境信息,确保对车辆周围环境的正确理解,并基于此做出相应的规划和决策。

目前两种主流技术路线,一种是以特斯拉为代表的以摄像头为主导的多传感器融合技术方案;另一种是谷歌为代表的以激光雷达为主导,其他传感器为辅助的技术方案。为高效解决纯视觉方案下多个摄像头的数据融合问题,特斯拉在2021年提出BEV+Transformer方案,2022年推出占用栅格网络(Occupancy)进一步叠加完善3D空间识别。在常规的前视视角与后融合路线之外,这套方案将数据整合在鸟瞰视角下,避免了视野遮挡,以Occupancy优化边界感知与物体识别,再通过基于注意力机制(Attention Mechanism)的神经网络模型Transformer,更加灵活、高效地感知和处理数据,进一步反哺高阶自动驾驶的能力提升。

大模型进一步推动感知算法升级,自动驾驶逐步走向“轻图”时代。从2023年开始,以BEV+Transformer等感知层面的神经网络大模型为基础、借助纯感知和融合感知路线、通过“重感知+轻地图”彻底摆脱成本高鲜度低的高精地图成为实现城市NOA的主流路线。相较于CNN(卷积神经网络)和RNN(循环神经网络)等小模型,Transformer等大模型长序列处理能力更强、并行计算效率更高,可以通过注意力层的结构识别元素之间的多维信息,泛化性更强,从而减小车端硬件成本,成为目前城市自动驾驶技术方案的优先选择。

决策是依据驾驶场景认知态势图,根据驾驶需求进行任务决策,能够在避开存在的障碍物前提下,通过一些特定的约束条件,规划出两点之间多条可以选择的安全路径,并在这些路径当中选择一条最优的路径,决策出车辆行驶轨迹。

最后由线控底盘系统来执行驾驶指令、控制车辆运行,如车辆的纵向控制,即车辆的驱动与制动控制,是指通过对油门和制动的协调,实现对期望车速的精确跟随;车辆的横向控制,即通过方向盘角度的调整以及轮胎力的控制,实现自动驾驶汽车的路径跟踪。

自动驾驶系统主要由环境感知单元、决策单元、控制单元组成,如图1所示。

图形用户界面, 网站

描述已自动生成

图1 自动驾驶系统架构

(一)环境感知单元

环境感知单元主要包含各类传感器如摄像头、毫米波雷达、激光雷达、超声波雷达以及GPS&惯导组合等,获取车辆所处环境信息和车辆状态信息。环境感知起着类似人类驾驶员“眼睛”和“耳朵”的作用,是实现自动驾驶的前提条件。

其中车辆本身状态信息包括车辆速度、行驶方向、行驶状态、车辆位置等;道路感知包括道路类型检测、道路标线识别、道路状况判断、是否偏离行驶轨迹等;行人感知主要判断车辆行驶前方是否有行人,包括白天行人识别、夜晚行人识别、被障得物遗挡的行人识别等;交通信号感知主要是自动识别交叉路口的信号灯、如何高效通过交叉路口等;交通标识感知主要是识别道路两侧的各种交通标志,如限速、弯道等,及时提醒驾驶员注意;交通状况感知主要是检测道路交通拥堵情况、是否发生交通事故等,以便车辆选择通畅的路线行驶;周围车辆感知主要检测车辆前方、后方、侧方的车辆情况,避免发生碰撞,也包括交叉路口被障碍物遮挡的车辆。

在复杂的交通路况环境下,单一传感器无法完成全部的环境感知,必须整合各种类型传感器,利用传感器融合技术,使其为自动驾驶汽车提供更加真实可靠的路况环境信息。

(1)激光雷达

激光雷达实时感应周边环境信息,形成高清立体图形。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态,甚至形状等参数。

激光雷达优势在于障碍物检测,速度反应快、探测距离远、精度较高。是目前已知的环境测量方案中测量精度最高的传感器解决方案。和摄像头这类被动传感器相比,激光雷达可以主动探测周围环境,即使在夜间仍能准确地检测障碍物。因为激光光束更加聚拢,所以比毫米波雷达拥有更高的探测精度。但激光雷达更容易受到空气中雨雪雾霾等的干扰,且现阶段的成本较高。

(2)毫米波雷达

毫米波雷达是在自动驾驶中广泛使用的传感器,主要用于避免汽车与周围物体发生碰撞,如盲点检测、避障辅助、泊车辅助、自适应巡航等。

毫米波雷达由芯片、天线、算法共同组成,基本原理是发射一束电磁波,观察回波与入射波的差异来计算目标与车辆之间的距离、速度等。成像精度的衡量指标为距离探测精度、角分辨率、速度差分辨率。毫米波频率越高,带宽越宽,成像越精细。

毫米波雷达工作在毫米波频段,是指波长在1~10毫米的电磁波,对应的频率范围为30~300GHz。在毫米波雷达的频率选择上,主要由三种波段,24GHz,60GHz,77GHz。毫米波雷达波长短,频带宽,穿透能力强,探测距离远,检测速度快、准确,可以在雨雪天气等各种恶劣环境中稳定全天候工作。但是精度不高,对车道线交通标志等无法检测,且信号衰减大、容易受到建筑物、人体等的阻挡,传输距离较短,难以成像等。

随着毫米波芯片技术的发展,应用于车载的毫米波雷达系统得到了大规模应用,然而传统雷达系统面临着以下缺陷:

a)当有静止车辆,目标信息容易和地杂波等掺杂在一起,识别难度较大,而移动车辆可以靠多普勒识别。

b)当有横穿车辆和行人,多普勒为零或很低,难以检测。

c)没有高度信息,高处物体如桥梁路牌和地面的车辆一样区分不开,容易造成误刹,影响安全性。

d)角度分辨率低,当两个距离很近的物体,其回波会被混在一起,很难知道有几个目标。

e)用雷达散射截面积区分物体难。可以通过不同物体的雷达散射截面积的不同和不同帧之间反射点的不同来区分路牌、立交桥和车辆,然而准确率并不高。

f)最远探测距离一般不超过200米,探测距离范围有限。

4D高分辨毫米波雷达(4D High Resolution Radar),也称为4D成像毫米波雷达,其中4D指的是距离(Range)、速度(Velocity)、水平角度(Azimuth)和俯仰角度或高度(Elevation)四个维度的信息。4D成像毫米波雷达突破了传统车载雷达的局限性,可以以很高的分辨率同时探测目标的距离、速度、水平角度和俯仰角度/高度,使得:

a)最远探测距离大幅提升,可达300多米,比激光雷达和视觉传感器都要远。

b)4D毫米波雷达系统水平角度分辨率较高,通常可以达到1°的角度分辨率,可以区分300米处的两辆近车。

c)4D毫米波雷达系统可以测量俯仰角度,可达到优于2°的角度分辨率,可在150米处区分地物和立交桥。

d)当有横穿车辆和行人, 多普勒为零或很低时通过高精度的水平角度和高精度的俯仰角度可以有效识别目标。

e)目标点云更密集,信息更丰富,更适合与深度学习框架结合。

(3)摄像头

摄像头是自动驾驶车辆最常用、最简单且最接近人眼成像原理的环境感知传感器。通过实时拍摄车辆周围的环境,采用计算机视觉技术对所拍摄图像进行分析,实现车辆周围的车辆和行人检测以及交通标志识别等功能。

摄像头的安装位置有前视、侧视、后视和内置。主要用于前向碰撞预警系统、车道偏离警示系统、交通标志识别系统、停车辅助系统、盲点侦测系统。摄像头通常分为单目摄像头和双目摄像头两种,一般情况下单目车载摄像头的视角为50°~60°,可视距离为100米~200米。而双目摄像头能够通过模拟人类的视觉成像方式进行3D成像,比较两个摄像头获得的不同图像信号,识别物体更可靠,通过算法得出物体的距离、速度信息等。

摄像头的主要优点在于其分辨率高、成本低。但在夜晚、雨雪雾霾等恶劣天气下,光照的变化对其识别精度的影响较大,摄像头的性能会迅速下降。此外摄像头所能观察的距离有限,不擅长于远距离观察,且目前的摄像头技术对于静态图像中的远方物体难以识别。

(4)超声波雷达

超声波雷达是利用声波的传播来提取环境信息。首先发出高频声波,并且接收物体反射来的回波,最后计算从发送信号到收到回波的时间间隔,从而确定物体的距离。超声波雷达的成本较低、重量轻、功耗低,但是探测距离很近,适合测量0.2米~4米左右的距离。

(5)5G/C-V2X

车联网5G/C-V2X就是把车连到网或者把车连成网,包括V2V、V2I、V2N和V2P。C-V2X是自动驾驶加速剂,能够有效补充单车智能的技术缺失。通过C-V2X网络,相当于自动驾驶打通外部大脑,提供了丰富、及时的外部信息输入,能够有效弥补单车智能的感知盲点。5G网络具备低时延、大带宽、高可靠的特性,大大提升了C-V2X传输信息的丰富性,也提高了C-V2X传感器的技术价值。

(6)多传感器融合技术

多传感器融合技术,也称为多传感器信息融合(Multi-sensor Information Fusion,MSIF),有时也称作多传感器数据融合(Multi-sensor Data Fusion),是一项实践性比较强的应用技术,涉及到信号处理、计算机技术、概率统计、模式识别、统计数学等多学科。

该技术实际上是对人脑综合处理复杂问题的一种功能模拟。与单传感器相比,多传感器融合技术在解决探测、跟踪和目标识别等问题时,能够增强系统的生存能力,提高整个系统的可靠性和健壮性,增强数据的可信度,提高精度,扩展系统的时间、空间覆盖率,增加系统的实时性和信息利用率等。

多传感器融合技术的主要目的是剔除无用的和错误的信息,保留正确的和有用的成分,从而实现对多种信息的获取、表示及其内在联系的综合处理和优化。这不仅可以提高系统决策、规划、反应的快速性和正确性,还能使系统获得更充分的信息。

此外,多传感器融合还涉及硬件同步和软件同步的概念。硬件同步通过使用同一种硬件同时发布触发采集命令,实现各传感器采集、测量的时间同步,确保同一时刻采集相同的信息。而软件同步则包括时间同步和空间同步,通过统一的主机给各个传感器提供基准时间,以及将不同传感器坐标系的测量值转换到同一个坐标系中。

多传感器数据融合的主要步骤如下:

a)通过多个传感器对待测目标进行测量,获得有效数据;

b)对各个传感器的采集数据进行特征点提取,得到想要的关于待测目标特征值;

c)对于得到的特征值进行模式识别处理,比如使用统计概率的方法判定其目标特点,以完成各传感器关于目标的确切描述;

d)将同一目标的描述数据进行整理归类;

e)最后利用融合算法将同一目标的特征进行融合,得到该目标的确切描述。

多传感器融合技术在结构上按其在融合系统中信息处理的抽象程度,主要划分为三个层次,数据层融合、特征层融合和决策层融合。

a)数据层融合:也称像素级融合,首先将传感器的观测数据融合,然后从融合的数据中提取特征向量,并进行判断识别。数据层融合需要传感器是同质的(传感器观测的是同一物理现象),如果多个传感器是异质的(观测的不是同一个物理量),那么数据只能在特征层或决策层进行融合。数据层融合不存在数据丢失的问题,得到的结果也是最准确的,但计算量大且对系统通信带宽的要求很高。

b)特征层融合:特征层融合属于中间层次,先从每种传感器提供的观测数据中提取有代表性的特征,这些特征融合成单一的特征向量,然后运用模式识别的方法进行处理。这种方法的计算量及对通信带宽的要求相对降低,但由于部分数据的舍弃使其准确性有所下降。

c)决策层融合:决策层融合属于高层次的融合,根据不同通道的判决结果,经过关联处理和决策融合判决等手段来得到最后的决策结果。决策层融合的主要研究方法包括遗传算法、贝叶斯决策、D-S证据推论法、人工神经网络、专家系统法等。决策层融合的主要优势在于它能够对各个通道的信息进行综合考虑,从而得到更加准确和可靠的决策结果。然而,由于对传感器的数据进行了浓缩,这种方法产生的结果相对而言最不准确,但它的计算量及对通信带宽的要求最低。

(二)决策单元

决策规划是自动驾驶的关键部分之一,如果将感知模块比作人的“眼睛”和“耳朵”,那么决策规划就是人的“大脑”。大脑在接收到传感器的各种感知信息之后,对当前环境做出分析,然后对底层控制模块下达指令,这一过程就是决策规划模块的主要任务。同时,决策规划单元可以处理复杂的场景,也是衡量和评价自动驾驶能力最核心的指标之一。

车辆的决策以横纵向驾驶行为可分为:驾驶行为推理问题,如停车、避让和车道保持等;速度决策问题,如加速、减速或保持速度等。实现自动驾驶关键在于车辆的行为决策是否合理可行,如综合车辆运行环境及车辆信息,结合行驶目的做出具有安全性、可靠性以及合理性的驾驶行为是决策控制的难点亦是实现自动驾驶的难点。应对环境多变性、检测不准确性、交通复杂性、交规约束性等诸多车辆行驶不利因素,如何降低或消除其产生的不利影响,是行为决策模块的研究重点。

此前已有许多应对不同环境的决策方法,可分为基于规则的行为决策方法和基于统计的行为决策方法。目前应用较广的模型有基于有限状态机模型和深度强化学习模型的自动驾驶决策方法。

(1)基于有限状态机的行为决策模型

有限状态机模型作为经典的智能车辆驾驶行为决策方法,因其结构简单、控制逻辑清晰,多应用于园区、港口等封闭场景。在这些封闭场景中道路具有固定的路线和节点,因此可预先设计行驶规则。这种预先设计行驶规则的方法将特定场景的车辆决策描述为离散事件,在不同场景通过不同事件触发相应的驾驶行为。这种基于事件响应的模型称为有限状态机决策模型。

有限状态机(Finite-State Machine,FSM)是对特定目标在有限个状态中由特定事件触发使状态相互转移并执行相应动作的数学模型。已经被广泛应用在特定场景无人驾驶车辆、机器人系统等领域。车辆根据当前环境选择合适的驾驶行为,如停车、换道、超车、避让、缓慢行驶等模式,状态机模型通过构建有限的有向连通图来描述不同的驾驶状态以及状态之间的转移关系,从而根据驾驶状态的迁移反应式地生成驾驶动作。此方法在简单场景时具有较高可靠性,很难胜任具有丰富结构化特征的城区道路环境下的行为决策任务。

(2)基于深度强化学习的行为决策模型

深度学习(Deep Learning,DL)在图像处理、语音识别、自然语言处理和视频分析分类等方面的应用取得了巨大的成功。所谓深度学习是指通过多层的神经网络和多种非线性变换函数,以组合低层特征的方式描述更加抽象的高层表示,这样便可以发现数据的分布式特征。

深度学习来源于人们对于人工神经网络的深入研究。人们在日常生活、学习等各种活动中每时每刻都需要感知大量数据,但是人类总是能从这些庞大的数据中以一种无法解释的方式获得有用的数据,这种方式正是人脑思维方式导致的,并且脑力思维至今为止还没有一种科学的方法来解释。近年来,深度强化学习技术方法越来越广泛的应用于智能网联车辆环境感知与决策系统。

(3)路径规划

智能网联车辆的路径规划就是在进行环境信息感知并确定车辆在环境中位置的基础上,按照一定的搜索算法,找出一条可通行的路径,进而实现智能车辆的自主导航。

路径规划的方法根据智能网联车辆工作环境信息的完整程度,可分为两大类:

基于完整环境信息的全局路径规划方法。例如,从上海到北京有很多条路,规划出一条作为行驶路线即为全局规划。如栅格法、可视图法、拓扑法、自由空间法、神经网络法等静态路径规划算法。

基于传感器实时获取环境信息的局部路径规划方法。例如,在全局规划好的上海到北京的那条路线上会有其他车辆或者障碍物,想要避过这些障碍物或者车辆,需要转向调整车道,这就是局部路径规划。局部路径规划的方法包括人工势场法、矢量域直方图法、虚拟力场法、遗传算法等动态路径规划算法等。

(三)控制单元线控技术

随着汽车智能化发展,智能汽车的感知识别、决策规划、控制执行三个核心系统中,与汽车零部件行业最贴近的是控制执行端,也就是驱动控制、转向控制、制动控制等,需要对传统汽车的底盘进行线控改造以适用于自动驾驶。

传统汽车底盘主要由传动系、行驶系、转向系和制动系四部分组成,四部分相互连通、相辅相成。线控底盘是对汽车底盘信号的传导机制进行线控改造,以电信号传导替代机械信号传导,从而使其更加适用于自动驾驶车辆。具体来说,就是将驾驶员的操作命令传输给电子控制器,由电子控制器将信号传输给相应的执行机构,最终由执行机构完成汽车转向、制动、驱动等各项功能。在这一过程中,线控结构替代了方向盘、刹车踏板与底盘之间的机械连接,将人力直接控制的整体式机械系统转变为操作端和设备端两个相互独立的部分,实现多来源电信号操作,使得线控底盘具备高精度、高安全性、高响应速度等优势。

如果把自动驾驶车辆比作人,那么线控底盘执行机构就是我们通常意义上的手和脚,用来做控制执行,是自动驾驶控制技术的核心部件。线控底盘主要有五大系统,分别为线控转向、线控制动、线控换挡、线控油门、线控悬挂。从执行端来看,线控油门、线控换挡、线控空气悬挂技术相对成熟,线控转向和线控制动是面向自动驾驶执行端最核心的产品。线控底盘是智能汽车实现L3及以上高阶自动驾驶的必要条件。

(1)线控制动系统

线控技术(X-By-Wire)源于飞机的控制系统,其将飞行员的操纵命令转化成电信号通过控制器控制飞机飞行。线控汽车采用同样的控制方式,可利用传感器感知驾驶人的驾驶意图,并将其通过导线输送给控制器,控制器控制执行机构工作,实现汽车的转向、制动、驱动等功能,从而取代传统汽车靠机械或液压来传递操纵信号的控制方式[1]。

制动系统将朝着智能化、线控化的方向发展,线控制动系统将取代以液压和气压为主的传统制动控制系统,成为未来制动系统的主流。线控制动系统采用电子控制的方式,可以大幅减少制动系统的反应时间,作为“控制执行层”中最关键组成之一,具备能量回收、响应迅速、安全冗余、适应高集成发展趋势以实现底盘域控的目标等优势。可以满足未来高等级自动驾驶系统的需求。

电子液压制动系统(Electronic Hydraulic Brake System,EHB)、电子机械制动系统(Electro Mechanical Brake,EMB)是线控制动的两大技术路线。

EHB是由传统液压系统和电子控制单元构成,相比EMB成本较低、制动力充足,且冗余系统备份提升安全性,是目前主流线控制动方案。

EMB为完全意义线控制动,摒弃传统制动系统的制动液及液压管路等部件,由电机驱动制动器产生制动力,仍处于发展初期。

从发展阶段来看,线控制动尚处于发展早期的阶段,目前渗透率较低,仅有少量车型配置,新能源汽车配置相对较高。

(2)线控转向系统

转向系统经历四个发展阶段,从最初的机械式转向系统(Manual Steering,MS)发展到液压转向系统(Hydraulic Power Steering,HPS),然后又出现了电控液压助力转向系统(Electro Hydraulic Power Steering,EHPS),以及现在主流的电动助力转向系统(Electro Power Steering, EPS)。

EPS系统主要由扭矩传感器、车速传感器、电动机、减速机构和电子控制单元等组成。驾驶员在操作方向盘进行转向时,扭矩传感器检测到转向盘的转向以及转矩的大小,将电压信号传送到电子控制单元。电子控制单元根据转矩传感器检测到的转矩电压信号、转动方向和车速信号等,向助力电机发出指令,使电动机输出响应大小和方向的转向助力转矩,从而产生辅助助力。

智能化推动线控转向成为新的趋势,对于L3及以上的智能驾驶车辆,部分或全程的驾驶工况,会脱离驾驶员的操控,对转向系统的控制精确性、可靠性要求会更高,因此只有线控转向可以满足。

从发展阶段来看,当前线控转向尚处于早期发展阶段,目前渗透率较低,仅在少量车型配备,随着自动驾驶的需求不断提高,线控转向的需求将会不断提高。在线控转向方面,也需要充分考虑冗余方案,冗余环节包括供电电源冗余、电源分配冗余、扭矩转角传感器冗余、微控制器MCU冗余、电机控制及驱动冗余、电机本体冗余等,从而可以在任意单点失效的情况下,系统仍然具备一定的转向助力能力,确保车辆的横向控制功能不受影响。线控转向取消转了方向盘与转向轮之间的机械连接,具备体积小、安全性高等优势,更加贴合高级别自动驾驶的需求,未来渗透率有望快速提升。

参考文献

[1] 信达证券.汽车行业线控底盘系列研究之四:线控转向,迈向高阶能驾驶,2023年迎量产元年[EB/OL].2022,12.

https://www.urpro.cn/document/report/automobile/QNQjWSdY

购书链接

您也可直接点击下方链接,进入机械工业出版社官方商城直接购买。京东、当当、天猫各大电商也已上线。

推荐阅读

《5G与智慧交通,加速未来出行大变革》

《车联未来:5G车联网创新商业模式》

《从云端到边缘:边缘计算的产业链和行业应用》

《5G与车联网技术》

好书推荐

01

图片

本书由吴冬升、李大成担任主编,机械工业出版社出版。书中在分析智慧城市重点建设内容和智能网联汽车重点发展内容基础上,进一步探讨智慧城市与智能网联汽车融合发展带来的车联网智能道路基础设施、新型能源基础设施、地理位置网、现代信息通信网、车城网平台建设和发展情况。并且介绍智慧城市与智能网联汽车融合创新发展的相关案例。了解详情请点击:【新书推荐】《智慧城市与智能网联汽车,融合创新发展之路》

图片

吴冬升 博士

▼点击下图链接购买

02

图片

本书由吴冬升、董志国两位博士主编,机械工业出版社2023年隆重出版。书中详细分析5G、智慧交通及自动驾驶的现状及发展趋势, 阐述城市公共交通、共享出行、智慧物流的最新进展。了解详情请点击:新书上架!《5G与智慧交通,加速未来出行大变革》

▼点击下图链接购买

图片

03

图片

继2020年《5G与车联网技术》、2021年《从云端到边缘:边缘计算的产业链和行业应用》出版之后,吴冬升博士带领「5G行业应用」作家团队推出又一力作——《车联未来:5G车联网创新商业模式》。本书由化学工业出版社出版,聚焦5G车联网商业模式,探索车联网未来可持续性发展之路。了解详情请点击:《车联未来:5G车联网创新商业模式》

▼点击下图链接购买

关于我们

「5G行业应用」是聚集TMT行业资深专家的研究咨询平台,致力于在5G时代为企业和个人提供客观、深入和极具商业价值的市场研究和咨询服务,帮助企业利用5G实现战略转型和业务重构。本公众号专注提供5G行业最新动态及深度分析,覆盖通信、媒体、金融、汽车、交通、工业等领域。

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值