numpy中reshap函数参数为-1的情况分析

最近学机器学习的时候,看到这样一段代码:x.reshape(-1,1),一直搞不懂参数-1是什么意思。最后就去看了看官方文档:

我们主要看一下红框框里面的内容:

The new shape should be compatible with the original shape. If an integer, then the result will be a 1-D array of that length. One shape dimension can be -1. In this case, the value is inferred from the length of the array and remaining dimensions.

翻译:

新形状应与原形状兼容。如果是整数,那么结果将是该长度的1-D数组。一个形状维数可以是-1,该值是从数组的长度和其余维数推断出来的。

人话:

这里我们用一个例子来说明,假如一个数组的shape是(3,4),这里3*4=12,对这个数组进行reshape操作后,新数组的shape中各维度的乘积也应为12。如果其中一个参数是-1,另一个参数是2,也就是(-1,2),那么这个新数组的shape就是(12/2,2),即(6,2);如果另一个参数是1,那么这个新数组的shape就是(12/1,1),即(12,1).

更多的情况用下面的代码实现:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值