Reshape()函数常常出现的“-1”

Reshape()函数中出现-1,意思就是,在这个函数中,若某一维度不定义大小则用“-1”,但是只能使用一次。

很好理解,对于一个已知的多维数组,你想改变它的形状,你可以选择直接根据已知元素数量确定好各个维度大小,这个-1无非是偷了个懒(个人理解,这个-1就是在不知元素个数时派上用场),当你确定好其它维度的硬性要求,计算机根据元素个数一除,就知道-1这个地方的值了。

import numpy as np
x = np.array([[1, 2, 3],
              [456],
              [789],
              [101112]])
#第一个维度不限,无其它维度要求,那不就是一维
x.reshape(-1)
#结果是
([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12])

#第一个维度维数是2,第二个不限,那不就是平分
x.reshape(2,-1)
#结果是
([[ 1,  2,  3,  4,  5,  6],
  [789, 10, 11, 12]])

#第二个维度维数是2,第一个不限,那不就是两个两个到底。
x.reshape(-1,2)
#结果是: 
([[ 1,  2],
  [ 3,  4],
  [ 5,  6],
  [ 7,  8],
  [ 9, 10],
  [11, 12]])

敬请各位批评指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值