(CCPC 2020 网络选拔赛)HDU 6900 Residual Polynomial(分治 + NTT)

Residual Polynomial

写出所有的 f i ( x ) f_i(x) fi(x)出来, f i , j f_{i, j} fi,j表示 f i ( x ) f_i(x) fi(x)的第 j j j项系数

{ f 1 , 0 f 1 , 1 f 1 , 2 … f 1 , n − 1 f 1 , n f 2 , 0 f 2 , 1 f 2 , 2 … f 2 , n − 1 f 2 , n f 3 , 0 f 3 , 1 f 3 , 2 … f 3 , n − 1 f 3 , n ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ f n − 1 , 0 f n − 1 , 1 f n − 1 , 2 … f n − 1 , n − 1 f n − 1 , n f n , 0 f n , 1 f n , 2 … f n , n − 1 f n , n } \left\{ \begin{matrix} f_{1, 0} & f_{1, 1} & f_{1, 2} & \dots & f_{1, n - 1} & f_{1, n}\\ f_{2, 0} & f_{2, 1} & f_{2, 2} & \dots & f_{2, n - 1} & f_{2, n}\\ f_{3, 0} & f_{3, 1} & f_{3, 2} & \dots & f_{3, n - 1} & f_{3, n}\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ f_{n - 1, 0} & f_{n - 1, 1} & f_{n - 1, 2} & \dots & f_{n - 1, n - 1} & f_{n - 1, n}\\ f_{n, 0} & f_{n, 1} & f_{n, 2} & \dots & f_{n, n - 1} & f_{n, n}\\ \end{matrix} \right\} f1,0f2,0f3,0fn1,0fn,0f1,1f2,1f3,1fn1,1fn,1f1,2f2,2f3,2fn1,2fn,2f1,n1f2,n1f3,n1fn1,n1fn,n1f1,nf2,nf3,nfn1,nfn,n
第一行是 a 0 , a 1 , a 2 , … , a n − 1 , a n a_0, a_1, a_2, \dots, a_{n - 1}, a_{n} a0,a1,a2,,an1,an

考虑下一行如何从上一行转移,分两种:

一、 f i , j × c i + 1 = f i + 1 , j f_{i, j} \times c_{i + 1} = f_{i + 1, j} fi,j×ci+1=fi+1,j

二、 f i , j × j × b i + 1 = f i + 1 , j − 1 f_{i, j} \times j \times b_{i + 1} = f_{i + 1, j - 1} fi,j×j×bi+1=fi+1,j1

可以想想成每个点有一条向下的连边 v a l u e = c value = c value=c,同时有一条向左下的连边 v a l u e = b × j value = b \times j value=b×j

我们从 f 1 , i f_{1, i} f1,i出发,走向 f n , j f_{n, j} fn,j,显然选择了 i − j i- j ij b × j b \times j b×j,所以还有 n − 1 − ( i − j ) n - 1 - (i - j) n1(ij) c c c

先不考虑 j j j,只算 b , c b, c b,c的贡献,设选 b b b的生成函数为 F ( x ) F(x) F(x),对于某个点有 F ( x ) = c + b x F(x) = c + bx F(x)=c+bx,因为上面的转移是具有区间性的。

所以 F ( l , r , x ) = F ( l , m i d , x ) ∗ F ( m i d , r , x ) F(l, r, x) = F(l, mid, x) * F(mid, r, x) F(l,r,x)=F(l,mid,x)F(mid,r,x),也就是在左区间选几个,右区间选几个,然后组合一下,这个组合刚好满足卷积的形式。

这一步就可以递归 O ( n log ⁡ n log ⁡ n ) O(n \log n \log n) O(nlognlogn)求解了。

接下来考虑 j j j的影响:

f n , k = ∑ i − k = j F ( j ) f 1 , i i ! k ! f_{n, k} = \sum\limits_{i - k = j} F(j)f_{1, i} \frac{i!}{k!} fn,k=ik=jF(j)f1,ik!i!

这里可以简单理解一下,每次只能向左向下移动,k是我们最后在的列,只能从初始列 i ≥ k i \geq k ik的列转移过来。

( k ! × f n , k ) = ∑ i − k = j F ( j ) ( f 1 , i × i ! ) \left(k! \times f_{n, k}\right) = \sum\limits_{i - k = j} F(j) \left(f_{1, i} \times i!\right) (k!×fn,k)=ik=jF(j)(f1,i×i!)

设 H ( k ) = k ! × f n , k , G ( i ) = f 1 , i × i ! 设H(k) = k! \times f_{n, k}, G(i) = f_{1, i} \times i ! H(k)=k!×fn,k,G(i)=f1,i×i! 考 虑 把 G 翻 转 , G ( n − i ) = G ( i ) 考虑把G翻转,G(n - i) = G(i) GG(ni)=G(i)

H ( k ) = ∑ i + j = n − k F ( j ) G ( i ) H(k) = \sum_{i + j = n - k} F(j) G(i) H(k)=i+j=nkF(j)G(i),于是再做一次卷积即可求得答案。

#include <bits/stdc++.h>

using namespace std;

const int mod = 998244353, inv2 = mod + 1 >> 1;

namespace Quadratic_residue {
  struct Complex {
    int r, i;

    Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {}
  };

  int I2;

  Complex operator * (const Complex &a, Complex &b) {
    return Complex((1ll * a.r * b.r % mod  + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
  }

  Complex quick_pow(Complex a, int n) {
    Complex ans = Complex(1, 0);
    while (n) {
      if (n & 1) {
        ans = ans * a;
      }
      a = a * a;
      n >>= 1;
    }
    return ans;
  }

  int get_residue(int n) {
    mt19937 e(233);
    if (n == 0) {
      return 0;
    }
    if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
      return -1;
    }
    uniform_int_distribution<int> r(0, mod - 1);
    int a = r(e);
    while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
      a = r(e);
    }
    I2 = (1ll * a * a % mod - n + mod) % mod;
    int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
    if(x > y) swap(x, y);
    return x;
  }
}

const int N = 1e6 + 10;

int r[N], inv[N], b[N], c[N], d[N], e[N], t[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * a * ans % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

void get_r(int lim) {
  for (int i = 0; i < lim; i++) {
    r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
  }
}

void get_inv(int n) {
  inv[1] = 1;
  for (int i = 2; i <= n; i++) {
    inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
  }
}

void NTT(int *f, int lim, int rev) {
  for (int i = 0; i < lim; i++) {
    if (i < r[i]) {
      swap(f[i], f[r[i]]);
    }
  }
  for (int mid = 1; mid < lim; mid <<= 1) {
    int wn = quick_pow(3, (mod - 1) / (mid << 1));
    for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
      int w = 1;
      for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
        int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
        f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
      }
    }
  }
  if (rev == -1) {
    int inv = quick_pow(lim, mod - 2);
    reverse(f + 1, f + lim);
    for (int i = 0; i < lim; i++) {
      f[i] = 1ll * f[i] * inv % mod;
    }
  }
}

void polyinv(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = quick_pow(f[0], mod - 2);
    return ;
  }
  polyinv(f, g, n + 1 >> 1);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(t, lim, 1);
  NTT(g, lim, 1);
  for (int i = 0; i < lim; i++) {
    int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
    g[i] = 1ll * g[i] * cur % mod;
    t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void polysqrt(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = Quadratic_residue::get_residue(f[0]);
    return ;
  }
  polysqrt(f, g, n + 1 >> 1);
  polyinv(g, b, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  for (int i = 0; i < n; i++) {
    t[i] = f[i];
  }
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
    b[i] = t[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

void derivative(int *a, int *b, int n) {
  for (int i = 0; i < n; i++) {
    b[i] = 1ll * a[i + 1] * (i + 1) % mod;
  }
}

void integrate(int *a, int n) {
  for (int i = n - 1; i >= 1; i--) {
    a[i] = 1ll * a[i - 1] * inv[i] % mod;
  }
  a[0] = 0;
}

void polyln(int *f, int *g, int n) {
  polyinv(f, b, n);
  derivative(f, g, n);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(g, lim, 1);
  NTT(b, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * b[i] % mod;
    b[i] = 0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
  integrate(g, n);
}

void polyexp(int *f, int *g, int n) {
  if (n == 1) {
    g[0] = 1;
    return ;
  }
  polyexp(f, g, n + 1 >> 1);
  int lim = 1;
  while (lim < 2 * n) {
    lim <<= 1;
  }
  polyln(g, d, n);
  for (int i = 0; i < n; i++) {
    t[i] = (f[i] - d[i] + mod) % mod;
  }
  t[0] = (t[0] + 1) % mod;
  get_r(lim);
  NTT(g, lim, 1);
  NTT(t, lim, 1);
  for (int i = 0; i < lim; i++) {
    g[i] = 1ll * g[i] * t[i] % mod;
    t[i] = d[i] =  0;
  }
  NTT(g, lim, -1);
  for (int i = n; i < lim; i++) {
    g[i] = 0;
  }
}

/*
  b存放多项式逆,
  c存放多项式开根,
  d存放多项式对数ln,
  e存放多项式指数exp,
  t作为中间转移数组,
  如果要用到polyln,得提前调用get_inv(n)先预先得到我们想要得到的逆元范围。
*/

int B[N], C[N], f[N], fac[N], inv1[N], n;

vector<int> F[N];

int A1[N], B1[N];

void init() {
  fac[0] = 1;
  for (int i = 1; i < N; i++) {
    fac[i] = 1ll * fac[i - 1] * i % mod;
  }
  inv1[N - 1] = quick_pow(fac[N - 1], mod - 2);
  for (int i = N - 2; i >= 0; i--) {
    inv1[i] = 1ll * inv1[i + 1] * (i + 1) % mod;
  }
}

void merge(int rt) {
  int ls = rt << 1, rs = rt << 1 | 1;
  int n = F[ls].size(), m = F[rs].size();
  F[rt].resize(n + m);
  for (int i = 0; i < n + m; i++) {
    F[rt][i] = 0;
  }
  if (n <= 50 && m <= 50) {
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < m; j++) {
        F[rt][i + j] = (F[rt][i + j] + 1ll * F[ls][i] * F[rs][j] % mod) % mod;
      }
    }
    return ;
  }
  for (int i = 0; i < n; i++) {
    A1[i] = F[ls][i];
  }
  for (int i = 0; i < m; i++) {
    B1[i] = F[rs][i];
  }
  int lim = 1;
  while (lim < n + m) {
    lim <<= 1;
  }
  get_r(lim);
  NTT(A1, lim, 1);
  NTT(B1, lim, 1);
  for (int i = 0; i < lim; i++) {
    A1[i] = 1ll * A1[i] * B1[i] % mod;
  }
  NTT(A1, lim, -1);
  for (int i = 0; i < n + m; i++) {
    F[rt][i] = A1[i];
  }
  for (int i = 0; i < lim; i++) {
    A1[i] = B1[i] = 0;
  }
}

void divide(int rt, int l, int r) {
  if (l == r) {
    F[rt].push_back(C[l]);
    F[rt].push_back(B[l]);
    return ;
  }
  int mid = l + r >> 1;
  divide(rt << 1, l, mid), divide(rt << 1 | 1, mid + 1, r);
  merge(rt);
  F[rt << 1].clear(), F[rt << 1 | 1].clear();
}

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  int T;
  init();
  scanf("%d", &T);
  while (T--) {
    scanf("%d", &n);
    for (int i = 0; i <= n; i++) {
      scanf("%d", &f[i]);
      f[i] = 1ll * f[i] * fac[i] % mod;
    }
    for (int i = 0; i <= n - 2; i++) {
      scanf("%d", &B[i]);
    }
    for (int i = 0; i <= n - 2; i++) {
      scanf("%d", &C[i]);
    }
    divide(1, 0, n - 2);
    int lim = 1;
    while (lim <= 2 * n) {
      lim <<= 1;
    }
    get_r(lim);
    for (int i = 0; i <= n; i++) {
      A1[i] = f[n - i];
    }
    for (int i = 0; i < F[1].size(); i++) {
      B1[i] = F[1][i];
    }
    F[1].clear();
    NTT(A1, lim, 1);
    NTT(B1, lim, 1);
    for (int i = 0; i < lim; i++) {
      A1[i] = 1ll * A1[i] * B1[i] % mod;
    }
    NTT(A1, lim, -1);
    for (int i = 0; i <= n; i++) {
      printf("%lld%c", 1ll * inv1[i] * A1[n - i] % mod, i == n ? '\n' : ' ');
    }
    for (int i = 0; i < lim; i++) {
      A1[i] = B1[i] = 0;
    }
  }
  return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值