快速傅里叶变换

本文主要介绍了快速傅里叶变换(FFT)的概念,包括离散反傅里叶变换(IDFT)和FFT的加速过程。通过阐述n次单位复数根及其在复平面上的分布,解释了如何利用FFT提高计算效率。文中提到了消去引理、折半引理和求和引理,并给出了DFT的迭代算法模板。
摘要由CSDN通过智能技术生成

由于fft非常烧脑,特地写一个博客以防以后忘掉。其中内容大部分参考吴永辉老师的课件,模板是刘昆老师提供的,在此由衷地表示感谢。

概念

多项式 A ( x ) = a 0 + a 1 x + a 2 x 2 + ⋅ ⋅ ⋅ + a n − 1 x n − 1 A(x)=a_{0}+a_{1}x+a_{2}x^{2}+\cdot \cdot \cdot +a_{n-1}x^{n-1} A(x)=a0+a1x+a2x2++an1xn1有两种表示法:系数表示法和点值表示法。
因为系数最高项为 n n n 的多项式 A ( x ) A(x) A(x) 可以看成 n n n 个点组成的函数图像
假设多项式 A ( x ) , B ( x ) A(x),B(x) A(x)B(x)所取的点横坐标都相同,则 A ( x ) ∗ B ( x ) A(x)*B(x) A(x)B(x)的点值就可表示为 ( x 1 , A ( x 1 ) ∗ B ( x 1 ) ) , ( x 2 , A ( x 2 ) ∗ B ( x 2 ) ) , ⋅ ⋅ ⋅ , ( x n , A ( x n ) ∗ B ( x n ) ) { (x_{1}, A(x_{1})*B(x_{1})), (x_{2}, A(x_{2})*B(x_{2})), \cdot \cdot \cdot , (x_{n}, A(x_{n})*B(x_{n}))} (x1,A(x1)B(x1)),(x2,A(x2)B(x2)),,(xn,A(xn)B(xn))
把一个多项式的点值表示法转化为系数表示法的过程,就是离散反傅里叶变换(Inverse Discrete Fourier Transform,IDFT)。
快速傅里叶变换(Fast Fourier Transformation,FFT)就是通过取某些特殊的x的点值来加速DFT和IDFT的过程。
取哪些值呢?首先想到的肯定是1,1的任何次方都是1,但这远远不够,这时我们引用复数。
如果复数 w w w 满足 w n = 1 w_{n}=1 wn=1 ,则复数 w w w n n n 次单位复数根。 n n

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值