【Only notes here】20200206

《基于深度强化学习的移动边缘计算中的计算卸载与资源分配算法》作者:李季

1. 基于强化学习的整体计算卸载

1.1 系统模型

1.1.1 网络模型

在这里插入图片描述

  • 单小区场景:一个基站,与MEC服务器部署在一起,为小区内 N N N 个 User Equipment ,UE 提供计算服务。
  • 如果同时有 K K K 个用户卸载计算, U E n UE_n UEn可实现的数据上传速率 r n r_n rn
    在这里插入图片描述
    • W W W :无线信道的带宽
    • P n P_n Pn U E n UE_n UEn的传输功率
    • h n h_n hn :分配给 U E n UE_n UEn 的无线信道的信道增益
    • N 0 N_0 N0 :复杂高斯白噪声信道的方差

  • 每个 U E n UE_n UEn 都有一个计算密集型任务 R n ≜ ( B n , D n , τ n ) R_n \triangleq (B_n,D_n, \tau_n) Rn(Bn,Dn,τn) ,可选择在本地设备 / 卸载至MEC服务器上处理
    • B n B_n Bn :完成 R n R_n Rn所需的输入数据的大小
    • D n D_n Dn :完成计算任务所需的CPU周期总数, D n D_n Dn B n B_n Bn 的大小呈正相关
    • τ n \tau_n τn :任务 R n R_n Rn 的最大可容纳延迟
  • 每个 U E UE UE只能选择 本地处理 / 将任务整体卸载到MEC服务器上处理
  • 0 − 1 0-1 01向量 α n ∈ { 0 , 1 } \alpha_n \in\{0,1\} αn{0,1} 表示 U E n UE_n UEn的卸载决策,定义 A = [ α 1 , α 2 , … , α N ] \Alpha=[\alpha_1,\alpha_2,\dots,\alpha_N] A=[α1,α2,,αN]为整个MEC系统的卸载决策向量。
    • α n = 0 \alpha_n=0 αn=0,选择本地计算; α n = 1 \alpha_n=1 αn=1,选择整体卸载到MEC服务器执行计算

1.1.2 计算执行模型

A. 本地处理模型

  • T n l T^l_n Tnl U E n UE_n UEn本地执行延迟,它只包括本地CPU的处理时间
  • f n l f^l_n fnl U E n UE_n UEn计算能力(单位是每秒的CPUcycle数)
  • 用户 n n n的计算任务 R n R_n Rn在本地完成的执行时间 T n l T^l_n Tnl
    在这里插入图片描述
  • E n l E^l_n Enl :本地计算的能耗
    在这里插入图片描述
  • z n z_n zn能耗密度
  • 综合考虑执行延迟和能耗, U E n UE_n UEn选择本地计算的加权开销
    在这里插入图片描述
  • 0 ≤ I n t , I n e ≤ 1 0\leq I_n^t,I_n^e\leq1 0Int,Ine1:用户n的执行延迟和能耗的权重参数

B. 卸载处理模型

  • U E n UE_n UEn上传输入数据到基站,再由基站转给MEC服务器

  • MEC服务器分配部分计算资源来执行计算任务

  • MEC将执行结果返回给 U E n UE_n UEn

  • 根据上述三步骤,卸载处理的执行延迟会包含三部分
    第一部分:
    传输 B n B_n Bn大小的输入数据产生的传输延迟 T n , t o T^o_{n,t} Tn,to
    在这里插入图片描述

    • r n r_n rn :上传数据的速率
      该过程对应的能耗:
      在这里插入图片描述
      第二部分:
      MEC服务器处理任务 R n R_n Rn的处理延迟 T n , p o T^o_{n,p} Tn,po
    • f n f_n fn :MEC服务(单位是每秒的CPU cycle数)
      在这里插入图片描述
      该过程的能耗 E n , p o E^o_{n,p} En,po
      在这里插入图片描述

    第三部分:

    • B b B_b Bb :回传数据大小
    • r b r_b rb :回传过程的数据传输速率
      回传过程的是时间延迟 T n , b o T^o_{n,b} Tn,bo
      在这里插入图片描述
  • 无线网络的回传速率一般远高于上传数据 & 回传数据大小远小于输入数据,因此回传过程的延迟和能耗一般忽略掉

  • 完整的卸载计算的执行延迟 & 能耗:
    在这里插入图片描述

  • 加权总开销:
    在这里插入图片描述


1.2 问题建模

  • 有了本地计算 / 卸载计算的加权总开销, U E n UE_n UEn只能选择其中一种计算方式,优化的目标是所有User的加权总开销之和,即:
    在这里插入图片描述
  • 加权总开销最小化问题由下式表示:
    在这里插入图片描述

1.3 解决方案

1.3.1 状态&动作&回报

  • 状态
  • 动作:每一个动作a由两部分组成:所有用户的卸载决策 A = [ α 1 , α 2 , … , α N ] \Alpha=[\alpha_1,\alpha_2,\dots,\alpha_N] A=[α1,α2,,αN]资源分配 f = [ f 1 , f 2 , … , f N ] f=[f_1,f_2,\dots,f_N] f=[f1,f2,,fN],将二者可能取值情况组合,得到动作向量 [ α 1 , α 2 , … , α N , f 1 , f 2 , … , f N ] [\alpha_1,\alpha_2,\dots,\alpha_N,f_1,f_2,\dots,f_N] [α1,α2,,αN,f1,f2,,fN]
  • 回报:对于寻找最佳状态过程的每一步来说,agent在状态s下,执行一个可能的动作a后,都会得到一个回报R(s,a),当前的优化目标是最小化总开销,而强化学习的目标是最大化回报,
    在这里插入图片描述
    上式表示当前的加权总开销比全本地计算的加权总开销减少的比例,R(s,a)越大——说明当前状态的tc越小,得到最大回报等同于获得了最小的加权总开销,这样就成功转化了问题。
  • 作者在学习过程之前提出了一个预分类步骤,解决随着用户增加带来的算法运行和收敛问题。

1.3.2 Q-learning方法

……

1.3.3 Deep Q Network方法

  • DQN基本思想:使用DNN来近似估计Q(s,a),而不是计算每个state-action的Q值

在这里插入图片描述

2020-02-05


2. 基于深度学习的部分计算卸载

2.1 系统模型

2.1.1 网络模型

在这里插入图片描述

  • 小区中有一个Base Station(BS) & N N N 个Mobile Device(MD)
  • 每个MDi有计算密集型任务 A i ≜ ( X i , L i , τ i d ) A_i \triangleq (X_i,L_i, \tau_i^d) Ai(Xi,Li,τid) 需要处理
    1. X i X_i Xi :单位bits,表示计算 A i A_i Ai所需的数据大小,包括程序代码&输入参数
    2. L i L_i Li :表示计算强度,单位为计算每bit数据所需的CPU周期为单位
    3. L i X i L_iX_i LiXi :处理所有输入数据所需的CPU周期总数,反映了完成任务 A i A_i Ai所需的计算资源量
    4. τ i d \tau_i^d τid :表示完成任务的时间限制
  • 许多复杂应用程序可分为两部分进行处理,即本地执行部分服务器执行部分
  • α i ∈ [ 0 , 1 ) \alpha_i \in [0,1) αi[0,1) 表示MDi 的卸载率。 α i ∈ [ 0 , 1 ) \alpha_i \in [0,1) αi[0,1)代表卸载处理数据的百分比, 1 − α i 1-\alpha_i 1αi代表本地处理数据的百分比。 α = [ α 1 , α 2 , α 3 , … , α N ] \alpha =[\alpha_1,\alpha_2,\alpha_3,\dots,\alpha_N] α=[α1,α2,α3,,αN]表示所有UE的卸载率
  • 将计算任务拆分之后再进行处理,可充分利用服务器和MDs并行计算的优势,在延迟缩减和能耗节约上取得更好的效果
  • MDi可实现的数据上传速率Ri
    在这里插入图片描述
  • W W W:无线信道的带宽
  • P i P_i Pi:MDi上传数据的传输功率
  • θ 2 \theta^2 θ2:复杂高斯白信道噪声的方差

2.1.2 计算执行模型

A. 本地处理模型

  • 本地执行延迟 t i l t_i^l til
    在这里插入图片描述
  • 本地执行能耗 e i l e_i^l eil
    在这里插入图片描述
  • 通过合理分配本地计算频率 f i l f_i^l fil,来减少用户设备自身的能耗
    在这里插入图片描述

B. 卸载处理模型

  1. MDi通过无线接入网络将输入数据 X i X_i Xi的卸载计算部分 α i X i \alpha_iX_i αiXi上传至基站,基站再将数据转发到MEC服务器
  2. MEC服务器分配计算资源来执行卸载部分的计算处理
  3. 最后,MEC服务器通过基站将执行结果返回给MDi
  • 整个卸载执行过程中的能耗:
    在这里插入图片描述

2.2 问题建模

  • 对于每个UE,本地处理能耗+卸载处理能耗就能得到MDi在整个计算过程中的能耗:
    在这里插入图片描述
  • 在部分卸载模型下,目的是最小化MEC系统中所有用户的能耗之和。
    在这里插入图片描述
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
【资源说明】 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip 基于深度强化学习的部分计算任务卸载延迟优化python源码+代码注释.zip 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值