Windows 10 pytorch模型转换为 OpenVINO需要的IR文件 附推理测试代码

提示:假设读者OpenVINO环境已经配置好
环境配置可参考:https://nickhuang1996.blog.csdn.net/article/details/81391468
pytorch模型不能直接转成OpenVINO需要的IR文件, 需要先转成onnx中间模型。
可参考pytorch官网实例:https://pytorch.org/docs/master/onnx.html#torch-onnx

model_name = "导出的onnx模型名字"
dummy_input = torch.rand(1, 3, 80, 80)
model.eval()
output_onnx = '{}.onnx'.format(model_name)
print("==> Exporting model to onnx format at'{}'".format(output_onnx))
input_names = ["input"]
output_names = ["output"]
model = "自己构建的模型"
# dynamic_axes 构建动态batch_size
torch_out = torch.onnx.export(model, dummy_input, output_onnx, verbose=True, input_names=input_names,
                              output_names=output_names,
                              dynamic_axes={"input": {0: "batch_size"},
                                            "output": {0: "batch_size"}}
                              )
print("==> Loading and checking exported model from '{}'".format(output_onnx))
onnx_model = onnx.load(output_onnx)
onnx.checker.check_model(onnx_model)  # assuming throw on error
print("==> Passed")

我们首先进入c盘下的:

C:\Program Files (x86)\Intel\openvino_2021.2.185\deployment_tools\model_optimizer\install_prerequisites

找到这个文件夹进入,按住shift,鼠标右键打开PowerShell,就可以打开一个在此文件夹命令窗口。
在这里插入图片描述

根据需要安装依赖环境,这样可以减少安装时间,我这里需要onnx环境,就运行install_prerequisites_onnx 命令
在这里插入图片描述

进入C盘下的这个目录,使用mo_onnx.py,对onnx模型进行转换。
在这里插入图片描述
运行
python mo_onnx.py --input_model <自己的onnx模型的绝对路径> --output_dir <输出模型的绝对路径>
–batch 1(如果导出模型设置的是动态batch_size,这里根据需要指定,不然报错)
在这里插入图片描述
测试生成的OpenVINO生成的IR文件(此处引用贾志刚老师的课程代码

#include <inference_engine.hpp>
#include <opencv2/opencv.hpp>
#include <fstream>

using namespace InferenceEngine;
std::string labels_txt_file = "分类类别txt文件";
std::vector<std::string> readClassNames();
int main(int argc, char** argv) {
	InferenceEngine::Core ie;
	std::vector<std::string> devices = ie.GetAvailableDevices();
	for (std::string name : devices) {
		std::cout << "device name: " << name << std::endl;
	}

	
	std::string cpuName = ie.GetMetric("CPU", METRIC_KEY(FULL_DEVICE_NAME)).as<std::string>();
	std::cout << "cpu full name: " << cpuName << std::endl;
	std::string xml = "xml文件路径";
	std::string bin = "bin文件路径";
	std::vector<std::string> labels = readClassNames();
	cv::Mat src = cv::imread("图片路径");

	InferenceEngine::CNNNetwork network = ie.ReadNetwork(xml, bin);	
	InferenceEngine::InputsDataMap inputs = network.getInputsInfo();
	InferenceEngine::OutputsDataMap outputs = network.getOutputsInfo();

	std::string input_name = "";
	for (auto item : inputs) {
		input_name = item.first;
		auto input_data = item.second;
		input_data->setPrecision(Precision::FP32);
		input_data->setLayout(Layout::NCHW);
		input_data->getPreProcess().setColorFormat(ColorFormat::RGB);
		std::cout << "input name: " << input_name << std::endl;
	}

	std::string output_name = "";
	for (auto item : outputs) {
		output_name = item.first;
		auto output_data = item.second;
		output_data->setPrecision(Precision::FP32);
		std::cout << "output name: " << output_name << std::endl;
	}

	auto executable_network = ie.LoadNetwork(network, "CPU");
	auto infer_request = executable_network.CreateInferRequest();

	auto input = infer_request.GetBlob(input_name);
	size_t num_channels = input->getTensorDesc().getDims()[1];
	size_t h = input->getTensorDesc().getDims()[2];
	size_t w = input->getTensorDesc().getDims()[3];
	size_t image_size = h*w;
	cv::Mat blob_image;
	cv::resize(src, blob_image, cv::Size(w, h));
	cv::cvtColor(blob_image, blob_image, cv::COLOR_BGR2RGB);
	blob_image.convertTo(blob_image, CV_32F);
	blob_image = blob_image / 255.0;
	cv::subtract(blob_image, cv::Scalar(0.485, 0.456, 0.406), blob_image);
	cv::divide(blob_image, cv::Scalar(0.229, 0.224, 0.225), blob_image);

	// HWC =》NCHW
	float* data = static_cast<float*>(input->buffer());
	for (size_t row = 0; row < h; row++) {
		for (size_t col = 0; col < w; col++) {
			for (size_t ch = 0; ch < num_channels; ch++) {
				data[image_size*ch + row*w + col] = blob_image.at<cv::Vec3f>(row, col)[ch];
			}
		}
	}

	infer_request.Infer();

	auto output = infer_request.GetBlob(output_name);
	const float* probs = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(output->buffer());
	const SizeVector outputDims = output->getTensorDesc().getDims();
	std::cout << outputDims[0] << "x" << outputDims[1] << std::endl;
	float max = probs[0];
	int max_index = 0;
	for (int i = 1; i < outputDims[1]; i++) {
		if (max < probs[i]) {
			max = probs[i];
			max_index = i;
		}
	}

	std::cout << "class index : " << max_index << std::endl;
	std::cout << "class name : " << labels[max_index] << std::endl;
	cv::putText(src, labels[max_index], cv::Point(50, 50), cv::FONT_HERSHEY_SIMPLEX, 1.0, cv::Scalar(0, 0, 255), 2, 8);
	cv::imshow("输入图像", src);
	cv::waitKey(0);
	return 0; 
}


std::vector<std::string> readClassNames()
{
	std::vector<std::string> classNames;

	std::ifstream fp(labels_txt_file);
	if (!fp.is_open())
	{
		printf("could not open file...\n");
		exit(-1);
	}
	std::string name;
	while (!fp.eof())
	{
		std::getline(fp, name);
		if (name.length())
			classNames.push_back(name);
	}
	fp.close();
	return classNames;
}

小伙伴们,赶快动手试一试吧!!!!!!!!!!!!

如有错误,欢迎评论区指正!!

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch模型转换为Tensorscript并部署于C平台需要以下步骤: 首先,要将PyTorch模型转换为Tensorscript模型。Tensorscript是一个用于高性能推理的图形执行模型,而PyTorch是一个用于深度学习训练和推理的框架。在转换过程中,我们需要使用TorchScript API。这个API允许将PyTorch模型转换为可序列化的脚本模型转换过程中,我们需要确保模型中使用的所有操作和模块都被支持并转换为Tensorscript的等效操作。有些高级功能和操作可能无法直接转换需要对其进行手动的调整和替换。 完成模型转换后,我们可以开始部署这个Tensorscript模型到C平台。在部署之前,我们需要将Tensorscript模型保存为一个文件,以便在C平台中使用。可以使用TorchScript提供的函数将模型保存到硬盘上。 接下来,我们需要在C平台上使用一个能够加载并执行Tensorscript模型的库。一个常用的库是libTorch,它是PyTorch的C++前端库,可以加载和执行Tensorscript模型。 在C平台上部署之前,我们需要确保我们的环境已经准备好了libTorch的依赖项,并且有正确的库和头文件路径。 部署的代码可以使用C或C++编写,并且需要加载Tensorscript模型,并将输入数据传递给模型进行推理。部署过程还需要处理模型的输出结果,并根据需求将结果展示、保存或传递给其他程序进行进一步的处理。 总结起来,将PyTorch模型转换为Tensorscript并部署到C平台需要模型转换为Tensorscript模型,保存为文件,准备和安装libTorch的依赖项,并在C平台上编写代码来加载和执行Tensorscript模型

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值