Win系统通过命令行查看笔记本电池损耗/寿命/健康

在 Windows 10/11 系统中,可以通过指令查看笔记本电池的寿命情况,方法如下:

0,打开cmd/终端

键盘快捷键:Win + R,然后输入cmd,点击【确定】

1,执行命令

在命令行中输入下面指令并按下回车:

powercfg /batteryreport

此命令会生成一个电池报告,并保存在用户目录下。命令执行成功后,会显示报告的保存路径,通常为:

C:\Users\你的用户名\battery-report.html

当然,上面的截图中也写明了报告路径。

2,查看报告

打开文件管理器,导航到上述路径,找到 battery-report.html 文件

因为是HTML格式,所以双击打开会使用默认浏览器显示

在报告中,您可以查看以下电池信息:

  • 设计容量(Design Capacity):电池的原始容量。
  • 完全充电容量(Full Charge Capacity):电池当前的最大容量。
  • 循环计数(Cycle Count):电池的充电循环次数。
  • 电池使用历史(Battery Usage History) 和 电池充电历史(Battery Charge History):查看电池的历史状态和充电情况。

比较“设计容量”和“完全充电容量”,可以估算出电池的磨损情况,差距越大,说明电池衰减越明显。

对于我们需要的电池损耗/健康度,可以直接通过除法计算

3,其他内容

其实这份报告非常详尽,可以借助浏览器的翻译功能,查看其他项目都是啥

最近使用情况

电池使用 - 过去三天消耗

使用历史记录

电池容量历史记录

电池寿命估算

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sagima_sdu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值