2023华数杯数学建模c题b题a题思路模型代码分析

目录

2023华数杯最新 赛题思路(赛题出来以后第一时间在,发布请看文末名片)

下面给大家分析以前的题目

最新思路发布见此文末名片


2023华数杯最新 赛题思路
(赛题出来以后第一时间在,发布请看文末名片)

下面给大家分析以前的题目

1 描述
某大学数学系人力资源安排问题是一个整数规划的最优化问题,通过具体分析数学系现有的技术力量和各方面的约束条件,在问题一的求解中,可以列出一天最大直接收益的整数规划,求得最大的直接收益是42860元;而在问题二的求解中,由于教授一个星期只能工作四天,副教授一个星期只能工作五天,在这样的约束条件下,列出一个星期里最大直接收益的整数规划模型,求得其最大直接收益是198720元。

2 问题概括
数学系的教师资源有限,现有四个项目来源于四个不同的客户,工作的难易程度不一,各项目对有关技术人员的报酬不同。所以:

1.在满足工作要求的情况下,如何分配数学系现有的技术力量,使得其一天的直接收益最大?

2.在教授与副教授工作时间受到约束的条件下,如何分配数学系现有的技术力量,使得其在一个星期里的直接收益最大?

3 建模过程
3.1 边界说明
1.不同技术力量的人每天被安排工作的几率是相等的,且相同职称的个人去什么地方工作是随机的;

2.客户除了支付规定的工资额外,在工作期间里,还要支付所有相关的花费(如餐费,车费等);

3.当天工作当天完成.

3.2 符号约定

模型评价与推广
本模型通过合理的假设,充分考虑各方面的限制条件,得出的人员安排和直接收益

都是本模型的最优解与最优值,对武汉大学数学系的人力资源安排有一定的指导作用。但从模型假设中,我们可以知道对数

学系现有的技术力量的安排是随机的,在相同工作时段里,可能会出现部分人工作次数较多,而部分人较少的不公平情况。

所以在满足工作需求的情况下,分配工作时应该要人为地尽量使得每个人的工作次数不要相差太远,或者相等。

此模型通过对人力资源的调配,从量化的角度得出数学系的最大直接收益。利用此模型的方法可以求出所有类似本模型的线性规划模型。但是,本模型只是单目标的规划,可以在此基础上,增加目标要求。如在数学系的直接收益尽可能大的基础上,使得客户所花费的资金最少,等等。从而建立多目标规划模型。解决更为复杂的实际问题
 

f=[-1000;-800;-550;-450;-1500;-800;-650;-550;-1300;-900;-650;-350;-1000;-800;-650;-450];
A=zeros(9,16);
for i=1:1
   for j=1:16
      A(i,j)=1; 
   end
end
for i=2:5
   for j=i-1:4:11+i
      A(i,j)=1;
   end
end
i0=0;
for i=6:9
   for j=i0+1:(i-5 )*4
      A(i,j)=1;
   end
   i0=j;
end
b=[64;17;20;15;18;12;25;17;10];
Aeq=zeros(1,16);
Aeq(1,3)=1;
beq=[2];
LB=[1;2;2;1;2;2;2;2;2;2;2;1;1;3;1;0];
UB=[3;5;2;2;inf;inf;inf;8;inf;inf;inf;inf;inf;inf;inf;0];
[x,fval]=linprog(f,A,b,Aeq,beq,LB,UB)



f=[-1000;-1000;-1000;-1000;-1000;-1000;-1000;-1500;-1500;-1500;-1500;-1500;-1500;-1500;-1250;-1250;-1250;-1250;-1250;-1250;-1250;-950;-950;-950;-950;-950;-950;-950;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-800;-850;-850;-850;-850;-850;-850;-850;-750;-750;-750;-750;-750;-750;-750;-600;-600;-600;-600;-600;-600;-600;-700;-700;-700;-700;-700;-700;-700;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-650;-500;-500;-500;-500;-500;-500;-500;-600;-600;-600;-600;-600;-600;-600;-350;-350;-350;-350;-350;-350;-350;-450;-450;-450;-450;-450;-450;-450];
A=zeros(60,112);
for i=1;1
   for j=1:112
      A(i,j)=1;
   end 
end
i0=0;
for i=2:4
   for j=i0+1:(i-1)*28
      A(i,j)=1;
   end
   i0=j;
end
for i=5:32
   for j=(i-4):28:80+i
      A(i,j)=1;
   end
end
for i=33:39
   for j= i-32:7:(i-11)
      A(i,j)=1;
   end
end
j0=j;
for i=40:46
   for j=j0+(i-39):7:(i-18)+j0
      A(i,j)=1;
   end
end
j0=j;
for i=47:53
   for j=j0+(i-46):7:j0+(i-25)
      A(i,j)=1;
   end
end
j0=j;
for i=54:60
   for j=j0+(i-53):7:j0+(i-32)
      A(i,j)=1;
   end
end
b=[362;48;125;119;17;17;17;17;17;17;17;20;20;20;20;20;20;20;15;15;15;15;15;15;15;18;18;18;18;18;18;18;12;12;12;12;12;12;12;25;25;25;25;25;25;25;17;17;17;17;17;17;17;10;10;10;10;10;10;10];
UB=[3;3;3;3;3;3;3;5;5;5;5;5;5;5;3;3;3;3;3;3;3;2;2;2;2;2;2;2;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;8;8;8;8;8;8;8;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;+inf;0;0;0;0;0;0;0];
LB=[1;1;1;1;1;1;1;2;2;2;2;2;2;2;1;1;1;1;1;1;1;1;1;1;1;1;1;1;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;2;1;1;1;1;1;1;1;1;1;1;1;1;1;1;3;3;3;3;3;3;3;1;1;1;1;1;1;1;0;0;0;0;0;0;0];
Aeq=zeros(7,112);
for i=1:7
   Aeq(i,i+14)=1;
end
beq=[2;2;2;2;2;2;2];
[x,fval]=linprog(f,A,b,Aeq,beq,LB,UB)

最新思路发布见此文末名片

华数杯给出的目是一个基于雅鲁藏布江未来五十发展规划的一个优化类问。这与我们美赛的MCM型大致相同。MCM是一种偏向自然、理工的竞赛,目一般较具体,表述简洁,要求明确,并且通常会给出大量的表格数据进行数据处理。而华数杯的A需要参赛者自行收集数据进行建模规划。因此,对于本次的A,收集数据是一个重要的问。你可以分享自己收集来的数据以方便大家进行建模。2023华数杯如期开赛,作为美赛的模拟赛,赛和比赛时间都与美赛高度相似,参赛者完全可以将其作为一次美赛之前的练习赛进行。比赛的发时间与华数杯一致,都是早晨六点。已经将机器翻译的初步翻译结果分享给大家,以帮助大家更好地选。机器人在组装过程中,由于需求是随时间变化的,因此企业为了获得最佳生产效益,就要在整个生产过程中逐日地根据库存和需求决定生产计划。对于这个问,我们只需要将多阶段决策问转化为一系列单阶段最优化问,逐个求解即可。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [2023华数杯”国际大学生数学建模A完整思路](https://blog.csdn.net/qq_33690821/article/details/128860643)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *3* [备战2023华数杯数学建模,解析学习华数杯](https://blog.csdn.net/weixin_45499067/article/details/131967612)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值