中学光学复习
- 光沿直线传播
- 光独立传播(并不会发生散射)
- 光的反射、折射
- 光路可逆
- Fermat原理(光的路径是光程最短的路径)
- 全反射
其中独立性是我们接下来研究波动光学的一个重要基础。另一个是波的叠加。
光的干涉
光是电磁波
Maxwell通过数学推导,得出电磁波的速度接近光速。从而大胆猜测,光是电磁波,也就是说光是波,满足波的独立性和叠加性。这为我们科学解释光科学现象提供理论基础。
原子发光模型
从激发态回到基态的电子,放出能量,产生光子。
两大基本特征:间歇性和随机性。
激发态的寿命是有限的,一般为
1
0
−
11
∼
1
0
−
8
10^{-11}\sim10^{-8}
10−11∼10−8,这种早夭的特性,决定了不能有连续的自发激发态的原子完成发光行为。
对外表现为辐射出一定频率、振动方向,长度有限的光波列,虽然由于不连续(间歇性),但是因为这种光不相干(随机性)且频率较高,所以人眼看到的是连续的图像。
单色光
具有单一频率或波长的光,通常发生在有限长的单色波列中。
相干光
光矢量
光波中的电场矢量 E → \overrightarrow{E} E称为光矢量。
利用这种矢量想法,我们建立平均光强时,使用类似余弦定理的形式。
I
=
I
1
+
I
2
+
2
I
1
I
2
cos
Δ
φ
I=I_1+I_2+2\sqrt{I_1I_2\cos\Delta\varphi}
I=I1+I2+2I1I2cosΔφ
稳定相干条件:
- 确定的相位差(必要条件)
实际上这一点就作为相干条件。
- 振动方向平行
- 频率
干涉的光强分布
干涉实际上是波的叠加的一个实例。
相差
2
k
π
2k\pi
2kπ相长,相差
(
2
k
+
1
)
π
(2k+1)\pi
(2k+1)π相消。
由上述光强叠加的讨论,只有当两光源光强相等的时候,相消处才会出现完全暗带。
干涉光的相长、相消区,在空间上分布为两条双曲线。
光源的相干长度
根据普通光源发光的特点,分光再汇聚时,波程差不能大于原子光波列的长度:这个长度定义为相干长度
我们注意到薄膜干涉里,汇聚的两束光控制不当,很可能不来自于同一个波阵面,如果大于光波列长度,那么它们将不来自同一个光波列、不具有相干性。
获得相干光的方法
由这个相干长度的考量,相干光其实并不容易获得。所以光究竟是粒子还是波,争论持续百余年。直到Thomas Young巧妙的设计了双缝干涉实验,才最终获得了解决。
主要的获得相干光的方法有如下几种:
- 分振幅法:薄膜干涉(分的是能量)
- 分波阵面法:杨氏双缝干涉
- 激光法
杨氏双缝
公式推导:
Δ
φ
=
2
π
λ
δ
=
2
π
λ
(
r
2
−
r
1
)
\Delta\varphi=\frac{2\pi}{\lambda }\delta=\frac{2\pi}{\lambda }(r_2-r_1)
Δφ=λ2πδ=λ2π(r2−r1)
利用泰勒公式,
r
2
−
r
1
=
D
2
+
(
x
+
d
/
2
)
2
−
D
2
+
(
x
−
d
/
2
)
2
≈
D
⋅
x
d
2
D
2
×
2
=
x
d
D
,
x
,
d
<
<
D
r_2-r_1=\sqrt{D^2+(x+d/2)^2}-\sqrt{D^2+(x-d/2)^2}\approx D\cdot\frac{xd}{2D^2}\times 2=\frac{xd}{D}, x,d<<D
r2−r1=D2+(x+d/2)2−D2+(x−d/2)2≈D⋅2D2xd×2=Dxd,x,d<<D
联合先前得到的相位差的结果,
Δ
φ
=
2
k
π
\Delta\varphi=2k\pi
Δφ=2kπ时为亮纹。
x
k
=
k
D
λ
d
x_k=k\frac{D\lambda}{d}
xk=kdDλ
这就是亮纹公式。
相邻亮纹间距:
Δ
x
=
x
k
+
1
−
x
k
=
D
λ
d
\Delta x = x_{k+1}-x_k=\frac{D\lambda }{d}
Δx=xk+1−xk=dDλ
助记: d , x d,x d,x是泰勒近似中的同一个括号里的。所以相乘。等于另外两个相乘。
这个 k k k将明纹表示成一系列的等差级数。从而我们可以将双缝最中间的亮纹到外侧依次表示为 k k k级级数。
利用这样的语言,我们可以描述复色光的彩纹顺序。蓝紫光波长小,对应间距小,所以在一级明纹中靠内。
洛埃镜实验
一实一虚两个两个光源。虚光源通过镜面反射产生。
结论与杨氏干涉类似,唯一的注意点是当投影面与镜面端相交时,交点处本应该出现亮纹的地方成为暗纹。这是由半波损失引起的。
薄膜干涉
光程
单色光在真空中的波长:
λ
=
c
ν
\lambda = \frac{c}{\nu}
λ=νc
λ
′
=
u
ν
=
c
/
n
ν
=
c
/
ν
n
=
λ
n
\lambda'=\frac{u}{\nu}=\frac{c/n}{\nu}=\frac{c/\nu}{n}=\frac{\lambda }{n}
λ′=νu=νc/n=nc/ν=nλ
折射率较大的介质,使得光的波长减小,使得在单位空间长度的相位变化增大。
从这个意义上说,折射率是介质中相位变化的稠密度。
在相位改变相同的情况下,把光在介质中传播的路程折合为光在真空中传播的路程,也就是光程。
这是我们研究薄膜干涉的理论基础。
半波损失
- 从光疏到光密
- 垂直或掠射
反射光绘有 π \pi π相位突变。表现在原有相长处为相消,从而称为损失。
至于相差的半个波长可以加也可以减。
透射不可能发生半波损失。
薄膜等厚干涉
名字上看起来比较反智。厚度均匀的薄膜,才看起来像等厚干涉,然而……是考虑观察平面垂直于相干光。
满足 n 2 > n 1 , n 3 n_2>n_1,n_3 n2>n1,n3的条件时,要考虑半波损失。
劈尖膜
δ
=
2
n
d
+
λ
2
=
{
k
λ
,
l
i
g
h
t
(
2
k
+
1
)
λ
2
d
a
r
k
\delta=2nd+\frac{\lambda}{2}=\begin{cases}k\lambda,&light\\(2k+1)\frac{\lambda}{2}&dark\end{cases}
δ=2nd+2λ={kλ,(2k+1)2λlightdark
从这个例子,我们其实可以利用起点处是否发生半波损失来确定光程差。
r l = λ 2 n ( k − 1 2 ) , r d = λ 2 n k r_l=\frac{\lambda}{2n}(k-\frac{1}{2}),r_d=\frac{\lambda }{2n}k rl=2nλ(k−21),rd=2nλk
相邻条纹所对应的厚度差:
d
k
+
1
−
d
k
=
λ
2
n
d_{k+1}-d_k=\frac{\lambda}{2n}
dk+1−dk=2nλ
相邻条纹间隔:
l
=
Δ
d
sin
θ
≈
λ
2
n
θ
l=\frac{\Delta d}{\sin\theta}\approx\frac{\lambda}{2n\theta}
l=sinθΔd≈2nθλ
牛顿环
δ
=
2
d
+
λ
2
=
{
k
λ
(
2
k
+
1
)
λ
2
\delta = 2d+\frac{\lambda}{2}=\begin{cases}k\lambda\\(2k+1)\frac{\lambda}{2}\end{cases}
δ=2d+2λ={kλ(2k+1)2λ
由几何关系:
r
2
=
R
2
−
(
R
−
d
)
2
≈
2
R
d
r^2=R^2-(R-d)^2\approx2Rd
r2=R2−(R−d)2≈2Rd
r
l
=
(
2
k
−
1
)
R
λ
2
,
r
d
=
k
R
λ
r_l=\sqrt{\frac{(2k-1)R\lambda}{2}},r_d=\sqrt{kR\lambda}
rl=2(2k−1)Rλ,rd=kRλ
越向外,级数越高,内疏外密。
薄膜等倾干涉
本质上是均匀厚度薄膜的斜反射,倾角相等,故称等倾干涉。
光程差公式:
δ
=
2
n
d
cos
γ
±
λ
2
\delta=2nd\cos\gamma\pm\frac{\lambda}{2}
δ=2ndcosγ±2λ
其中
γ
\gamma
γ为折射角。相差半波可以是加也可以是减,毕竟对上面那条线来说,表观上是相同的。
光程差的微分为
Δ
δ
=
2
n
d
sin
γ
Δ
γ
\Delta\delta=2nd\sin\gamma\Delta\gamma
Δδ=2ndsinγΔγ
相邻明纹光程差必定是一个波长。
Δ
δ
≈
λ
,
Δ
γ
≈
λ
2
n
d
sin
γ
\Delta\delta \approx \lambda,\Delta\gamma\approx\frac{\lambda}{2nd\sin\gamma}
Δδ≈λ,Δγ≈2ndsinγλ
观察到,
γ
∈
[
0
,
π
2
)
,
γ
↗
,
Δ
↘
\gamma\in[0,\frac{\pi}{2}),\gamma\nearrow,\Delta\searrow
γ∈[0,2π),γ↗,Δ↘
所以呈内疏外密。
但分析光程差, γ = 0 \gamma=0 γ=0时, δ \delta δ最大。所以级数递减。