大学物理第十三章:波动光学基础
一、光是电磁波
1.波源,波速,频率
波源:任何振动的电荷或者电荷系都是发射电磁波的源
波速:约等于3.0 × 1 0 8 m / s \times 10^8 m/s ×108m/s
频率:光谱很宽,可见光为其中的一部分
γ
射
线
→
x
射
线
→
紫
外
线
→
可
见
光
→
红
外
线
→
无
线
电
波
\gamma射线\rightarrow x射线\rightarrow 紫外线\rightarrow 可见光\rightarrow 红外线\rightarrow 无线电波
γ射线→x射线→紫外线→可见光→红外线→无线电波
二、光源,光波的叠加
1.发光原理
由于某种原因(热辐射、电致发光、光致发光等),原子内部的运动状态发生变化,处于基态的原子吸收能量而到了激发态,但激发态的原子不稳定,它自发地从激发态跃迁到基态,并把多余的能量以电磁波的形式辐射出去,若 λ \lambda λ在可见光范围,则物质发光。
2.注意:同一光源发出的光是非相干光
3.光波的叠加
(1)光束相干条件
- 同频
- 同振向
- 相位差恒定
合成光波的光强在空间形成强弱相间的稳定分布
-
不相干的两列光相遇:
I = I 1 + I 2 I=I_1+I_2 I=I1+I2--------亮度均匀
-
两束相干光束叠加:干涉条纹
两相干波的振动方程分别为
E 1 = E 10 c o s ( ω t − 2 π r 1 λ + φ 1 ) E 2 = E 20 c o s ( ω t − 2 π r 2 λ + φ 2 ) E_1=E_{10}cos(\omega t-2\pi\frac{r_1}{\lambda}+\varphi_1)\\ E_2=E_{20}cos(\omega t-2\pi\frac{r_2}{\lambda}+\varphi_2)\\ E1=E10cos(ωt−2πλr1+φ1)E2=E20cos(ωt−2πλr2+φ2)
合成:
E 0 2 = E 10 2 + E 20 2 + 2 E 10 E 20 c o s Δ φ I 0 2 = I 10 2 + I 20 2 + 2 I 10 I 20 c o s Δ φ 当 Δ φ = φ 2 − φ 1 − 2 π r 2 − r 1 λ { 2 k π , I 0 2 = I 10 2 + I 20 2 + 2 I 10 I 20 ( 2 k + 1 ) π , I 0 2 = I 10 2 + I 20 2 − 2 I 10 I 20 E_0^2=E_{10}^2+E_{20}^2+2E_{10}E_{20}cos\Delta\varphi\\ I_0^2=I_{10}^2+I_{20}^2+2\sqrt{I_{10}I_{20}}cos\Delta\varphi\\ 当\Delta\varphi=\varphi_2-\varphi_1-2\pi\frac{r_2-r_1}{\lambda}\begin{cases} 2k\pi,I_0^2=I_{10}^2+I_{20}^2+2\sqrt{I_{10}I_{20}}\\ (2k+1)\pi,I_0^2=I_{10}^2+I_{20}^2-2\sqrt{I_{10}I_{20}}\\ \end{cases} E02=E102+E202+2E10E20cosΔφI02=I102+I202+2I10I20cosΔφ当Δφ=φ2−φ1−2πλr2−r1{2kπ,I02=I102+I202+2I10I20(2k+1)π,I02=I102+I202−2I10I20
特别的,当 φ 1 = φ 2 , E 10 = E 20 , I 1 = I 2 \varphi_1=\varphi_2,E_{10}=E_{20},I_1=I_2 φ1=φ2,E10=E20,I1=I2时,我们引入光程差的概念
δ = r 2 − r 1 = { k λ ( 2 k + 1 ) λ 2 \delta=r_2-r_1=\begin{cases} k\lambda\\ (2k+1)\frac{\lambda}{2}\\ \end{cases} δ=r2−r1={kλ(2k+1)2λ
4.如何获得相干光源
(1)分波阵面法
(2)分振幅法
三、杨氏双缝干涉实验(分波面法)
1.实验装置
2.相干光的获得:分波阵面法
3.屏幕显像
由于这样的装置,两束光的初相
φ
1
,
φ
2
\varphi_1,\varphi_2
φ1,φ2相同,所以振动加强和减弱仅取决于光程差
r
1
,
r
2
r_1,r_2
r1,r2
Δ
φ
=
φ
2
−
φ
1
−
2
π
r
2
−
r
1
λ
,
由
波
程
差
r
2
−
r
1
决
定
\Delta\varphi=\varphi_2-\varphi_1-2\pi\frac{r_2-r_1}{\lambda},由波程差r_2-r_1决定
Δφ=φ2−φ1−2πλr2−r1,由波程差r2−r1决定
明暗条件:
δ = r 2 − r 1 = { ± k λ , k = 0 , ( 中 央 明 纹 ) , k = 1 , 2 , . . . 第 1 , 2 级 明 纹 ( 2 k + 1 ) λ 2 , k = 0 , 1 , 2 , . . . 第 1 , 2 , 3 级 暗 纹 \delta=r_2-r_1=\begin{cases} \pm k\lambda,k=0,(中央明纹),k=1,2,...第1,2级明纹\\ (2k+1)\frac{\lambda}{2},k=0,1,2,...第1,2,3级暗纹\\ \end{cases} δ=r2−r1={±kλ,k=0,(中央明纹),k=1,2,...第1,2级明纹(2k+1)2λ,k=0,1,2,...第1,2,3级暗纹
条纹位置:
δ = r 2 − r 1 = d s i n θ ≈ d x D = { ± k λ , 明 纹 ( 2 k + 1 ) λ 2 , 暗 纹 \delta=r_2-r_1=dsin\theta≈d\frac{x}{D}=\begin{cases} \pm k\lambda,明纹\\ (2k+1)\frac{\lambda}{2},暗纹\\ \end{cases} δ=r2−r1=dsinθ≈dDx={±kλ,明纹(2k+1)2λ,暗纹
明纹位置:
{ x 明 = ± k D λ d x 暗 = ± ( 2 k + 1 ) D λ 2 d \begin{cases} x_明=\pm k\frac{D\lambda}{d}\\ x_暗=\pm (2k+1)\frac{D\lambda}{2d}\\ \end{cases} {x明=±kdDλx暗=±(2k+1)2dDλ
条纹宽度:
亮 纹 间 距 : Δ x = ( k + 1 ) D λ d − k D λ d = D λ d 暗 纹 间 距 : Δ x = D λ d 亮纹间距:\Delta x=(k+1)\frac{D\lambda}{d}-k\frac{D\lambda}{d}=\frac{D\lambda}{d}\\ 暗纹间距:\Delta x=\frac{D\lambda}{d}\\ 亮纹间距:Δx=(k+1)dDλ−kdDλ=dDλ暗纹间距:Δx=dDλ
4.结论
(1)条纹特点
以中央明纹为中心,两侧条纹明暗相间,等宽度、等间距,等亮度
(2)条纹宽度公式
Δ x = D λ d \Delta x=\frac{D\lambda}{d} Δx=dDλ
(3)不同频率的光照射
白光照射, λ \lambda λ不同, Δ x \Delta x Δx不同。同一级光谱,由于 λ \lambda λ 不同,条纹位置不同,所以白光入射时,中央明纹是白色的,两侧条纹内紫外红排列.
(4)完整光谱级次
内紫外红: k λ 红 = ( k + 1 ) λ 紫 k\lambda_{红}=(k+1)\lambda_紫 kλ红=(k+1)λ紫;k可以看到完整光谱级次,k以上重叠起来
四、光程与光程差
1.光程
光在介质 中的波长 λ 介 = λ 0 n \lambda_介=\frac{\lambda_0}{n} λ介=nλ0
所以有
Δ
φ
=
2
π
r
2
λ
2
−
2
π
r
1
λ
1
=
2
π
n
2
r
2
−
n
1
r
1
λ
0
\Delta \varphi=2\pi\frac{r_2}{\lambda_2}-2\pi\frac{r_1}{\lambda_1}=2\pi\frac{n_2r_2-n_1r_1}{\lambda_0}
Δφ=2πλ2r2−2πλ1r1=2πλ0n2r2−n1r1
所以相干条件转化为:
δ
=
n
2
r
2
−
n
1
r
1
=
{
±
k
λ
,
k
=
0
,
(
中
央
明
纹
)
,
k
=
1
,
2
,
.
.
.
第
1
,
2
级
明
纹
(
2
k
+
1
)
λ
2
,
k
=
0
,
1
,
2
,
.
.
.
第
1
,
2
,
3
级
暗
纹
\delta=n_2r_2-n_1r_1=\begin{cases} \pm k\lambda,k=0,(中央明纹),k=1,2,...第1,2级明纹\\ (2k+1)\frac{\lambda}{2},k=0,1,2,...第1,2,3级暗纹\\ \end{cases}
δ=n2r2−n1r1={±kλ,k=0,(中央明纹),k=1,2,...第1,2级明纹(2k+1)2λ,k=0,1,2,...第1,2,3级暗纹
2.透镜不会引起附加的光程差
五、薄膜干涉
1.薄膜干涉的种类
- 等厚干涉:厚度不均匀的表面形成的干涉条纹
- 等倾干涉:厚度均匀但入射角不同产生的干涉条纹
2.等厚干涉的一般计算
(1)光程差:
δ = ( ∣ A B ∣ + ∣ B C ∣ ) n 2 − C D n 1 ( ± λ 2 ( 半 波 损 失 项 , 无 则 不 用 , 加 减 任 选 ) ) \delta=(|AB|+|BC|)n_2-CDn_1(\pm\frac{\lambda}{2}(半波损失项,无则不用,加减任选)) δ=(∣AB∣+∣BC∣)n2−CDn1(±2λ(半波损失项,无则不用,加减任选))
代入折射定律和几何关系后,得:
δ
=
2
d
n
2
2
−
n
1
2
s
i
n
2
i
(
±
λ
2
)
\delta=2d\sqrt{n_2^2-n_1^2sin^2i}(\pm \frac{\lambda}{2})
δ=2dn22−n12sin2i(±2λ)
(2)光强
C点的光强确定于:
δ
=
2
d
n
2
2
−
n
1
2
s
i
n
2
i
(
±
λ
2
)
=
{
k
λ
,
明
纹
(
2
k
+
1
)
λ
2
,
暗
纹
\delta=2d\sqrt{n_2^2-n_1^2sin^2i}(\pm \frac{\lambda}{2})=\begin{cases} k\lambda,明纹\\ (2k+1)\frac{\lambda}{2},暗纹\\ \end{cases}
δ=2dn22−n12sin2i(±2λ)={kλ,明纹(2k+1)2λ,暗纹
(3)等厚干涉
若角度 i i i不变,那么 δ \delta δ只随厚度d变化,同一厚度对应同一级干涉条纹,所以称为等厚干涉
(4)半波损失项的确定
有无半波损失有 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3大小关系确定
有半波损失:
{
n
1
>
n
2
<
n
3
n
1
<
n
2
>
n
3
\begin{cases} n_1>n_2<n_3\\ n_1<n_2>n_3 \end{cases}
{n1>n2<n3n1<n2>n3
”三明治状“有半波损失
(5)公式中的k的取值
灵活取定,保证公式有意义,如d>0
(6)透射光也有干涉现象
二条透射光在薄膜下表面处相遇发生干涉,其光程差为:
δ
=
(
∣
A
B
∣
+
∣
B
C
∣
)
n
2
−
∣
C
D
∣
n
1
(
±
λ
2
)
=
{
k
λ
,
明
纹
(
2
k
+
1
)
λ
2
,
暗
纹
\delta=(|AB|+|BC|)n_2-|CD|n_1(\pm \frac{\lambda}{2})=\begin{cases} k\lambda,明纹\\ (2k+1)\frac{\lambda}{2},暗纹\\ \end{cases}
δ=(∣AB∣+∣BC∣)n2−∣CD∣n1(±2λ)={kλ,明纹(2k+1)2λ,暗纹
(7)垂直入射的等厚干涉
3.劈尖干涉(垂直入射的等厚干涉)
(1)劈尖分类
- 空气劈尖
- 介质劈尖
(2)相干光的获得
入射光a入射到介质的表面,有反射光 a 1 a_1 a1和折射光 a 2 a_2 a2, a 1 , a 2 a_1,a_2 a1,a2为分振幅得到的相干光
①空气劈尖相干条件
δ = 2 n d + λ 2 = { k λ − − − − − − k = 1 , 2 , . . . 明 纹 ( 2 k + 1 ) λ 2 − − − k = 0 , 1 , 2... 暗 纹 \delta=2nd+\frac{\lambda}{2}=\begin{cases} k\lambda------k=1,2,...明纹\\ (2k+1)\frac{\lambda}{2}---k=0,1,2...暗纹 \end{cases} δ=2nd+2λ={kλ−−−−−−k=1,2,...明纹(2k+1)2λ−−−k=0,1,2...暗纹
注意:k的取值,当k=0时只能取暗纹,不能取明纹,保证d大于0,有意义
②常用结论
a.两级明纹对应的厚度差:
2 n d k + 1 + λ 2 = ( k + 1 ) λ 2 n d k + λ 2 = k λ ∴ Δ d = λ 2 n 2nd_{k+1}+\frac{\lambda}{2}=(k+1)\lambda\\ 2nd_{k}+\frac{\lambda}{2}=k\lambda\\ ∴\Delta d=\frac{\lambda}{2n} 2ndk+1+2λ=(k+1)λ2ndk+2λ=kλ∴Δd=2nλ
厚度d上包含几个 λ 2 n \frac{\lambda}{2n} 2nλ,这个厚度上就有几个明条纹
同理相邻暗纹对应的厚度差:
Δ
d
=
λ
2
n
\Delta d=\frac{\lambda}{2n}
Δd=2nλ
相邻暗纹和明纹对应的厚度差:
Δ
d
=
λ
4
n
\Delta d=\frac{\lambda}{4n}
Δd=4nλ
b.条纹间距的变化
l s i n θ = Δ d = λ 2 n l θ ≈ λ 2 n lsin\theta=\Delta d=\frac{\lambda}{2n}\\ l\theta≈\frac{\lambda}{2n}\\ lsinθ=Δd=2nλlθ≈2nλ
- 所以,对于同一个劈尖:
θ ↑ ⇒ l ↓ λ ↑ ⇒ l ↑ \theta\uparrow\Rightarrow l\downarrow\\ \lambda\uparrow\Rightarrow l\uparrow\\ θ↑⇒l↓λ↑⇒l↑
-
随着 θ \theta θ增大,条纹变密,向棱边靠拢
-
上玻璃片上移
{ 间 距 不 变 条 纹 整 体 向 棱 边 移 动 棱 边 处 发 生 : 暗 → 亮 → 暗 → . . . \begin{cases} 间距不变\\ 条纹整体向棱边移动\\ 棱边处发生:暗\rightarrow亮\rightarrow暗\rightarrow... \end{cases} ⎩⎪⎨⎪⎧间距不变条纹整体向棱边移动棱边处发生:暗→亮→暗→...
③劈尖的应用
a.测量微小长度(上下玻璃片长度近似相同)
b.测量薄膜厚度
c.检测工件的平整度
4.增透膜(等厚干涉)
目的:尽量减少反射光强度引起的能量损失,从而得到更多的透射光
操作:在透镜表面上镀一层厚度均匀的膜,取适当的厚度 d 和折射率 n,使单色光在膜的二表面上的反射光发生干涉相消,而大部分能量透过膜使透射光增强,这样的膜称为增透膜
原理:单色平行光 a 从空气垂直射入 M g F 2 MgF_2 MgF2 薄膜,经薄膜上、下表面反射而在上表面相遇发生干涉。(d 处处相同,上表面无条纹,或亮或暗)
n2层为氟化镁,n3层为透镜,n1层为空气层
n 3 > n 2 > n 1 n_3>n_2>n_1 n3>n2>n1,不会发生半波损失
光程差: δ = 2 n 2 d \delta=2n_2d δ=2n2d
为了使干涉相消:
δ
=
2
n
2
d
=
λ
2
(
2
k
+
1
)
,
k
=
0
,
1
,
.
.
.
\delta=2n_2d=\frac{\lambda}{2}(2k+1),k=0,1,...
δ=2n2d=2λ(2k+1),k=0,1,...
当k=0时,取得最薄的厚度
λ
4
n
2
\frac{\lambda}{4n_2}
4n2λ
5.牛顿环(等厚干涉)
(1)实验装置
图 5.5.1 图5.5.1 图5.5.1
(2)相干光的制备
分振幅法,与薄膜干涉相同
(3)定量计算
δ = 2 n d + λ 2 = { k λ − − − − − − k = 1 , 2 , . . . 明 纹 ( 2 k + 1 ) λ 2 − − − k = 0 , 1 , 2... 暗 纹 \delta=2nd+\frac{\lambda}{2}=\begin{cases} k\lambda------k=1,2,...明纹\\ (2k+1)\frac{\lambda}{2}---k=0,1,2...暗纹 \end{cases} δ=2nd+2λ={kλ−−−−−−k=1,2,...明纹(2k+1)2λ−−−k=0,1,2...暗纹
中心点 δ = 0 \delta=0 δ=0为暗点
①两相邻明纹对应的厚度差
Δ d = λ 2 n \Delta d=\frac{\lambda}{2n} Δd=2nλ
同理,两相邻暗纹对应的厚度差:
Δ
d
=
λ
2
n
\Delta d=\frac{\lambda}{2n}
Δd=2nλ
相邻明纹和暗纹之间的厚度差
Δ
d
=
λ
4
n
\Delta d=\frac{\lambda}{4n}
Δd=4nλ
②条纹间距
l s i n θ = Δ d = λ 2 n l ≈ λ 2 n θ lsin\theta=\Delta d=\frac{\lambda}{2n}\\ l≈\frac{\lambda}{2n\theta} lsinθ=Δd=2nλl≈2nθλ
劈尖 θ \theta θ处处相同,条纹等间距
牛顿环 θ \theta θ不同,条纹内疏外密
③干涉圆环的半径
由图5.5.1可得:
R
2
=
r
2
+
(
R
−
d
)
d
=
r
2
+
R
2
−
2
R
d
(
高
阶
无
穷
小
略
去
)
d
=
r
2
2
R
R^2=r^2+(R-d)^d=r^2+R^2-2Rd(高阶无穷小略去)\\ d=\frac{r^2}{2R}
R2=r2+(R−d)d=r2+R2−2Rd(高阶无穷小略去)d=2Rr2
代入干涉条件:
δ
=
2
n
d
+
λ
2
=
2
n
r
2
2
R
+
λ
2
=
{
k
λ
−
−
−
−
−
−
k
=
1
,
2
,
.
.
.
明
纹
(
2
k
+
1
)
λ
2
−
−
−
k
=
0
,
1
,
2...
暗
纹
\delta=2nd+\frac{\lambda}{2}=2n\frac{r^2}{2R}+\frac{\lambda}{2}=\begin{cases} k\lambda------k=1,2,...明纹\\ (2k+1)\frac{\lambda}{2}---k=0,1,2...暗纹 \end{cases}
δ=2nd+2λ=2n2Rr2+2λ={kλ−−−−−−k=1,2,...明纹(2k+1)2λ−−−k=0,1,2...暗纹
求得
r
明
=
.
.
.
r
暗
=
.
.
.
r_明=...r_暗=...
r明=...r暗=...
④明暗变化
-
牛顿环上移
明暗交替,向中间收缩,中心点也明暗交替
-
牛顿环下移
明暗交替向外扩散,中心点也明暗交替
六、迈克尔逊干涉仪(等厚干涉)
1.原理
直接理解成 M 1 M 2 ′ M_1 M_2' M1M2′之间形成了空气薄膜即可
2.常用计算
迈克尔逊干涉仪各材料的使用保证不会发生半波损失:
δ
=
2
n
d
=
{
k
λ
(
2
k
+
1
)
λ
2
\delta=2nd=\begin{cases} k\lambda\\ (2k+1)\frac{\lambda}{2}\\ \end{cases}
δ=2nd={kλ(2k+1)2λ
- M 1 M 2 M_1M_2 M1M2严格垂直:
移动d,是整个视野变亮,暗。因为d处处相等。
- 稍有倾角
劈尖干涉,可以通过条纹移动条数来判断玻璃的移动距离
Δ
d
=
N
λ
2
n
\Delta d=N\frac{\lambda}{2n}
Δd=N2nλ
-
插入别的介质
引起光程差 δ \delta δ的变化 Δ δ \Delta \delta Δδ
Δ δ = 2 n d − 2 n 0 d = 2 d ( n − 1 ) \Delta \delta=2nd-2n_0d=2d(n-1) Δδ=2nd−2n0d=2d(n−1)
若有一根条纹移动 Δ δ = λ \Delta \delta=\lambda Δδ=λ
若有N跟条纹移动
Δ
δ
=
N
λ
\Delta \delta=N\lambda
Δδ=Nλ
Δ
δ
=
2
n
d
−
2
n
0
d
=
2
d
(
n
−
1
)
=
N
λ
d
=
N
λ
n
−
1
\Delta \delta=2nd-2n_0d=2d(n-1)=N\lambda\\ d=\frac{N\lambda}{n-1}
Δδ=2nd−2n0d=2d(n−1)=Nλd=n−1Nλ
七、惠更斯菲涅耳原理
1.光的衍射现象
光在前进过程中遇到障碍物,当障碍物的线度 d ~ λ \lambda λ时,光可以改变传播方向,绕过障碍物向其他方向传播,且光强重新分布。
2.惠更斯菲涅耳原理
- 惠更斯:子波概念
- 菲涅尔:光强变化修正
3.衍射的种类
{ 菲 涅 尔 衍 射 夫 琅 禾 费 衍 射 , 平 行 光 衍 射 \begin{cases} 菲涅尔衍射\\ 夫琅禾费衍射,平行光衍射\\ \end{cases} {菲涅尔衍射夫琅禾费衍射,平行光衍射
八、单缝的夫琅禾费衍射
1.实验装置
2.用半波带法分析条纹的形成
衍射角为 φ \varphi φ的一束衍射光,通过透镜汇聚于P点二条边缘光线的光程差 δ = a s i n φ \delta=asin\varphi δ=asinφ
通过半波带法分析,得到下面的结论:
δ
=
a
s
i
n
φ
=
{
±
2
k
λ
2
,
k
=
1
,
2...
暗
纹
±
(
2
k
+
1
)
λ
2
,
k
=
1
,
2...
明
纹
\delta=asin\varphi=\begin{cases} \pm 2k\frac{\lambda}{2} ,k=1,2...暗纹\\ \pm (2k+1)\frac{\lambda}{2}, k=1,2...明纹\\ \end{cases}
δ=asinφ={±2k2λ,k=1,2...暗纹±(2k+1)2λ,k=1,2...明纹
明纹:衍射极大,衍射极强
暗纹:衍射极小,衍射极弱
- 不同的 φ \varphi φ,分成的半波带的面积不一样大
- 相同的 φ \varphi φ,分成的半波带的面积一样大
相邻二半波带的子波发出的光在 P 点干涉相消—暗纹;
明纹的亮度是由一个半波带的子波发出的光在P 点干涉叠加的结果
φ
越
大
,
B
C
越
大
,
分
成
的
半
波
带
越
多
,
一
个
半
波
带
的
面
积
越
小
,
一
个
半
波
带
所
含
的
子
波
数
目
越
少
明
纹
亮
度
越
暗
\varphi越大,BC越大,分成的半波带越多,一个半波带的面积越小,一个半波带所含的子波数目越少\\ 明纹亮度越暗
φ越大,BC越大,分成的半波带越多,一个半波带的面积越小,一个半波带所含的子波数目越少明纹亮度越暗
3.条纹的计算
δ = B C = a s i n φ = a t a n φ = a x f δ = a x f = { ± 2 k λ 2 ± ( 2 k + 1 ) λ 2 k = 1 , 2... k ≠ 0 \delta=BC=asin\varphi=atan\varphi=a\frac{x}{f}\\ \delta=a\frac{x}{f}=\begin{cases} \pm 2k\frac{\lambda}{2}\\ \pm (2k+1)\frac{\lambda}{2}\\ \end{cases}k=1,2...k≠0 δ=BC=asinφ=atanφ=afxδ=afx={±2k2λ±(2k+1)2λk=1,2...k=0
(1)明暗位置
x 明 = ± f λ 2 a ( 2 k + 1 ) x 暗 = ± f λ a k k = 1 , 2 , 3... x_明=\pm\frac{f\lambda}{2a}(2k+1)\\ x_暗=\pm\frac{f\lambda}{a}k\\ k=1,2,3... x明=±2afλ(2k+1)x暗=±afλkk=1,2,3...
(2)条纹宽度
①中央明纹:o点两侧第一级暗纹的间距
k
=
1
x
1
暗
=
f
λ
a
,
x
1
暗
′
=
−
f
λ
a
k=1\\ x_{1暗}=\frac{f\lambda}{a},x_{1暗}'=-\frac{f\lambda}{a}
k=1x1暗=afλ,x1暗′=−afλ
②任意一级明纹宽度:任相邻两级暗纹宽度
Δ
x
=
x
k
+
1
暗
−
x
k
暗
=
f
λ
a
\Delta x=x_{k+1暗}-x_{k暗}=\frac{f\lambda}{a}
Δx=xk+1暗−xk暗=afλ
中央明纹宽度是其他任意明纹宽度的两倍
(3)条纹位置的角坐标表示
九、衍射光栅及光栅光谱
1.透射衍射光栅
(1)刻痕为不透光部分:b
(2)刻痕间的透光部分:a
(3)光栅常数:d=a+b
2.光栅衍射条纹特点及其成因
-
特点:细、亮、间距大;
-
成因:单缝衍射和多缝干涉叠加的结果
3.条纹分析
(1)中央明纹
通过每个缝的衍射角 φ = 0 \varphi=0 φ=0的一束平行光,聚焦在主焦点上,因为 δ = 0 \delta=0 δ=0,所以形成中央亮纹
(2)各级明纹(主极大)的原因:光的干涉
δ = ( a + b ) s i n φ = k λ , k = 0 , ± 1 , ± 2.... 光 栅 公 式 \delta=(a+b)sin\varphi=k\lambda,k=0,\pm1,\pm2....光栅公式 δ=(a+b)sinφ=kλ,k=0,±1,±2....光栅公式
(3)主极大的位置
①角位置
(
a
+
b
)
s
i
n
φ
≈
(
a
+
b
)
φ
=
k
λ
⇒
φ
=
k
λ
a
+
b
(a+b)sin\varphi≈(a+b)\varphi=k\lambda\\ \Rightarrow \varphi=\frac{k\lambda}{a+b}
(a+b)sinφ≈(a+b)φ=kλ⇒φ=a+bkλ
②用x表示:
(
a
+
b
)
s
i
n
φ
≈
(
a
+
b
)
t
a
n
φ
=
(
a
+
b
)
x
f
=
k
λ
⇒
x
明
=
k
f
λ
a
+
b
(a+b)sin\varphi≈(a+b)tan\varphi=(a+b)\frac{x}{f}=k\lambda\\ \Rightarrow x_明=\frac{kf\lambda}{a+b}\\
(a+b)sinφ≈(a+b)tanφ=(a+b)fx=kλ⇒x明=a+bkfλ
(4)明纹出现的约束条件
①
∣
s
i
n
φ
∣
<
1
∣
k
∣
<
a
+
b
λ
|sin\varphi|<1\\ |k|<\frac{a+b}{\lambda}\\
∣sinφ∣<1∣k∣<λa+b
②缺级
(
a
+
b
)
s
i
n
φ
=
k
λ
—
—
满
足
缝
间
干
涉
加
强
a
s
i
n
φ
=
k
′
λ
—
—
单
缝
衍
射
减
弱
点
(a+b)sin\varphi=k\lambda——满足缝间干涉加强\\ asin\varphi=k'\lambda——单缝衍射减弱点
(a+b)sinφ=kλ——满足缝间干涉加强asinφ=k′λ——单缝衍射减弱点
此时,主极大消失,称为缺级,缺级的级数如下:
a
+
b
a
=
k
k
′
→
k
=
k
′
a
+
b
a
若
a
+
b
a
为
任
意
整
数
,
k
′
取
±
1
,
±
2
,
.
.
.
\frac{a+b}{a}=\frac{k}{k'}\rightarrow k=k'\frac{a+b}{a}\\ 若\frac{a+b}{a}为任意整数,k'取\pm1,\pm2,...
aa+b=k′k→k=k′aa+b若aa+b为任意整数,k′取±1,±2,...
k值为缺级
4.光栅光谱
白光垂直入射,形成下面的光谱
(1)由光栅公式
(
a
+
b
)
s
i
n
φ
=
k
λ
,
k
=
0
,
±
1
,
±
2...
x
明
=
k
λ
f
a
+
b
(a+b)sin\varphi=k\lambda,k=0,\pm1,\pm2...\\ x_明=\frac{k\lambda f}{a+b}\\
(a+b)sinφ=kλ,k=0,±1,±2...x明=a+bkλf
对于同一个k,不同的波长对应的明纹位置不同,所以是彩色条纹
(2)可见的光谱级数
∣
k
∣
<
a
+
b
λ
|k|<\frac{a+b}{\lambda}
∣k∣<λa+b
这里的
λ
\lambda
λ指得是白光中的最长的波长
(3)可见的完整光谱数
(
a
+
b
)
s
i
n
φ
=
k
λ
红
(
a
+
b
)
s
i
n
φ
=
(
k
+
1
)
λ
紫
即
(
k
+
1
)
λ
红
=
k
λ
紫
(a+b)sin\varphi=k\lambda_红\\ (a+b)sin\varphi=(k+1)\lambda_紫\\ 即(k+1)\lambda_红=k\lambda_紫
(a+b)sinφ=kλ红(a+b)sinφ=(k+1)λ紫即(k+1)λ红=kλ紫
(4)总结
考察可见条纹,要考虑下面的两个方面:
{
由
于
s
i
n
φ
的
有
界
性
得
到
k
的
范
围
由
于
缺
级
损
失
的
k
\begin{cases} 由于sin\varphi的有界性得到k的范围\\ 由于缺级损失的k \end{cases}
{由于sinφ的有界性得到k的范围由于缺级损失的k
十、光的偏振
1.光的偏振是横波的特有规律
(1)自然光概念
光振向取任何一个方向的概率均相等
(2)自然光的图形表示法
两个垂直方向的振动各占一半
二者疏密程度一样,表示各方向光振动一样,没有哪个方向的振动更占优势
(3)偏振光
①概念:只保留某一个方向,或者某一个方向的更占优势
②分类:
{
完
全
偏
振
光
(
线
偏
振
光
)
部
分
偏
振
光
\begin{cases} 完全偏振光(线偏振光)\\ 部分偏振光\\ \end{cases}
{完全偏振光(线偏振光)部分偏振光
③获得偏振光的方法
{
通
过
偏
振
片
光
在
两
个
界
面
的
反
射
双
折
射
\begin{cases} 通过偏振片\\ 光在两个界面的反射\\ 双折射 \end{cases}
⎩⎪⎨⎪⎧通过偏振片光在两个界面的反射双折射
2.偏振片的起偏和检偏 马吕斯定律
(1)偏振片的性质
只能有一个方向的光,或者其他方向振动的光的分量通过。形成完全偏振光
光强减半
1°自然光通过偏振片A 成为偏振光,光强减半;转动 A,透射光强度不变。
2°自然光通过 A 成为偏振光,再通过 B,转动 B,透射光强度发生周期性变化:
当
A
和
B
的
偏
振
化
方
向
一
致
,
光
强
最
强
;
当
A
和
B
的
偏
振
化
方
向
垂
直
,
光
强
最
弱
;
当A 和 B 的偏振化方向一致,光强最强;\\ 当A 和 B 的偏振化方向垂直,光强最弱;
当A和B的偏振化方向一致,光强最强;当A和B的偏振化方向垂直,光强最弱;
(2)马吕斯定律
设自然光强度
2
I
0
2I_0
2I0,通过起偏器变为
I
0
I_0
I0 ,再通过检偏器,透射光的强度(不计吸收):
I
=
I
0
c
o
s
2
α
I=I_0cos^2\alpha
I=I0cos2α
结论:要使完全偏振光的偏振化方向转过90°必通过二块偏振光。
(3)反射和折射引起的偏振
①布儒斯特定律
当 i b + γ = π 2 i_b+\gamma=\frac{\pi}{2} ib+γ=2π时完全偏振
当反射光垂直于折射光时完全偏振
此时:
- 反射光:完全偏振光,垂直于纸面
- 折射光:部分偏振光,入射面内的光振动强
t g i b = n 2 n 1 tgi_b=\frac{n_2}{n_1}\\ tgib=n1n2
应用:
- 测量不透明介质的折射率
- 玻璃堆
3.光的双折射
(1)晶体中的光的折射现象
在各向异性介质中,一束入射光可以产生两条折射光,一条为o光,一条为e光。此现象称为双折射
(2)双折射规律
- o光:遵守折射定律,寻常光
- e光:不遵守折射定律,非寻常光
- o光e光都是完全偏振光,二者振向相互垂直
- o光e光在同一介质中的传播速度不同
- o光为球面波面
- e光为旋转椭球面波面
(3)关于晶体的几个名词
-
晶体的光轴:不发生双折射的方向
-
单晶体&双晶体(光轴数量划分)
-
正晶体和负晶体
-
正晶体: v o > v e v_o>v_e vo>ve,球面包椭球面
-
负晶体: v e > v o v_e>v_o ve>vo,椭球面包球面
-
-
主平面:光轴和某一光线确定的平面
-
入射面:入射光和法线确定的平面
- 当光轴在入射面内:o,e主平面重合
- 当光轴垂直于入射面:o,e主平面不重合
o光垂直于o光主平面,e光与e光主平面平行