pandas之数据处理清洗(分割、合并,去特殊值,转换时间戳等)**

这篇博客介绍了如何使用pandas进行数据处理,包括数据清洗,如去除NaN值和不合规数据,按小区名称分割数据集,合并具有相同时间戳但不同小区的数据,并展示了转换时间戳的操作。提供了完整的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas之数据处理清洗(分割、合并,去特殊值,转换时间戳等)
首先看一下原数据
在这里插入图片描述

里面有nan值还有一些不符合要求的值,下面删除不需要的数据

*在这里插入图片描述
在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述

按每个小区名称分数据集

在这里插入图片描述
按照相同的时间戳不同的小区合并数据
在这里插入图片描述

完整代码可复制

博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

 # coding: utf-8
import pandas as pd
import time
from pandas.core.frame import DataFrame
df = pd.read_excel("D:/广饶数据/二网平衡历史数据-东方丽苑-低区.xlsx", encoding='utf-8', header=0) #读取数据
data_df = df['瞬时/设计流量(kg/m²·h)'].str.split('/', expand=True)  
#最后的位置如果是False,则是Series,如果是TRUE,则是DataFrame
data_df.columns = ['瞬时(kg/m²·h)','设计流量(kg/m²·h)'] #加入分开后的列名
data_df1 = df['阀给定/反馈值(%)'].str.split('/', expand
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值