ICLR2021 | CopulaGNN:利用图的两种角色提高GNN表现

论文《ICLR2021 | CopulaGNN》探讨了图在节点预测任务中的表示角色和相关角色,发现许多GNN模型未能有效利用相关信息。为此,提出了CopulaGNN模型,它能结合多种GNN模型并同时利用图的表示信息和相关性,实验证明其在连续和离散回归任务中表现优越。
摘要由CSDN通过智能技术生成

论文链接:https://openreview.net/pdf?id=XI-OJ5yyse

图结构的数据是无处不在的。然而,在数据表示中,由于信息的类型不同,图编码的方式也不尽相同。我们推荐的这篇论文区分了节点预测任务中图的表示角色相关角色,同时,研究了GNN模型是怎样有效地加强两种信息的表示。从概念上讲,表示信息为模型更好地构建节点特征提供了指导,而相关信息指出节点特征之间的相关性。通过模仿研究,我们发现许多流行的GNN模型不能够有效地利用相关信息。基于此,论文提出了Copula Graph Neuural Network (CopulaGNN)。该模型可以将许多GNN模型作为基础模型,并且同时利用图中的表示信息和相关信息。实验结果证明了这个模型是有效的。

1

介绍

GNN在机器学习中有广泛的应用,可以应用于推荐系统、社交网络分析、交通预测。在这些图结构数据的异质类型中,可以发现图在不同的环境中发挥不同的角色:

  1. 相关角色。图可以指出联系之间的统计关系。

  2.表示角色。图的拓扑结构可以编码数据的重要特征。

  3.因果关系,图可以反映领域专家指定的因果关系。

而这篇论文区分了图的表示角色和相关角色。通过利用这两种角色的优势,设计出了更好的GNN模型。

通过模仿学习,可以发现许多流行的GNN模型不能够有效地利用相关信息。基于此提出了Copula Graph Neuural Network (CopulaGNN)。该模型可以将许多GNN模型作为基础模型,并且同时利用图中的表示信息和相关信息。

在合成和真实数据上,用连续和离散回归任务来评价这个模型。实验结果表名,CopulaGNN比他们的基础GNN模型表现得更好。

这篇论文的成果如下:

  1. 区分了图的两种角色,发现许多现存的GNN在只作为相关角色时不能充分利用图信息。

  2. 提出了CopulaGNN,来整合图的相关角色和表示角色。

  3. 在半监督的回归任务上比较了CopulaGNN和基础的GNN模型。

2

模拟图的两种角色

我们在节点层面的半监督学习上研究了图的表示角色和相关角色。

首先论文介绍了节点层面的半监督学习。然后设计了一个合成的数据集,有   个结点,   条边。我们首先随机选取了一个特征矩阵,假设   是图的邻接矩阵,   是度矩阵,令   ,节点标签   ,根据    的不同,有三种合成数据(a),(b),(c):

(a)   

(b) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值