论文链接:https://openreview.net/pdf?id=XI-OJ5yyse
图结构的数据是无处不在的。然而,在数据表示中,由于信息的类型不同,图编码的方式也不尽相同。我们推荐的这篇论文区分了节点预测任务中图的表示角色和相关角色,同时,研究了GNN模型是怎样有效地加强两种信息的表示。从概念上讲,表示信息为模型更好地构建节点特征提供了指导,而相关信息指出节点特征之间的相关性。通过模仿研究,我们发现许多流行的GNN模型不能够有效地利用相关信息。基于此,论文提出了Copula Graph Neuural Network (CopulaGNN)。该模型可以将许多GNN模型作为基础模型,并且同时利用图中的表示信息和相关信息。实验结果证明了这个模型是有效的。
1
介绍
GNN在机器学习中有广泛的应用,可以应用于推荐系统、社交网络分析、交通预测。在这些图结构数据的异质类型中,可以发现图在不同的环境中发挥不同的角色:
1. 相关角色。图可以指出联系之间的统计关系。
2.表示角色。图的拓扑结构可以编码数据的重要特征。
3.因果关系,图可以反映领域专家指定的因果关系。
而这篇论文区分了图的表示角色和相关角色。通过利用这两种角色的优势,设计出了更好的GNN模型。
通过模仿学习,可以发现许多流行的GNN模型不能够有效地利用相关信息。基于此提出了Copula Graph Neuural Network (CopulaGNN)。该模型可以将许多GNN模型作为基础模型,并且同时利用图中的表示信息和相关信息。
在合成和真实数据上,用连续和离散回归任务来评价这个模型。实验结果表名,CopulaGNN比他们的基础GNN模型表现得更好。
这篇论文的成果如下:
区分了图的两种角色,发现许多现存的GNN在只作为相关角色时不能充分利用图信息。
提出了CopulaGNN,来整合图的相关角色和表示角色。
在半监督的回归任务上比较了CopulaGNN和基础的GNN模型。
2
模拟图的两种角色
我们在节点层面的半监督学习上研究了图的表示角色和相关角色。
首先论文介绍了节点层面的半监督学习。然后设计了一个合成的数据集,有 个结点, 条边。我们首先随机选取了一个特征矩阵,假设 是图的邻接矩阵, 是度矩阵,令 ,节点标签 ,根据 的不同,有三种合成数据(a),(b),(c):
(a)
(b)