Pytorch及torch-geometric近期问题小结

本文总结了在使用PyTorch和torch-geometric进行图项目开发时遇到的问题,包括多输入模型构建、数据类型转换、维度调整、 EarlyStopping实现,以及torch-geometric与networkx之间的转换和GCN训练的注意事项。
摘要由CSDN通过智能技术生成

近期问题小结

在AFP的Graph项目上碰到的问题小结

Pytorch相关

  • 如何进行多输入的模型构建,以双塔模型为例
  • 导入模型之前,数据需要转换为torch.tensor。不能是numpy数组
  • 在构建torch模型的时候,需要注意传入数据的类型,一般要改成float32,aka float。传入数据类型需要和模型中参数类型一致
  • cosine_similarity函数需要传入多维tensor。一维的tensor会报错,需要修改为[1,-1]。cosine_similariry的两个tensor,其中一个可以是行向量,另一个可以是多行向量。比如,[1,128]和[100,128],返回100维的cosine_similariry。
  • torch改变tensor的维度,可以使用reshape或者view。二者区别见博客。建议使用reshape
  • torch.utils.data和torch.utils.data.Dataloader用于batch计算。如果模型是只有nn.Module堆叠的情况,一般不需要对模型进行修正。如果模型有一些自定义层和自定义计算步骤,需要对其shape进行修改。尤其需
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值