PINN物理信息驱动的深度学习方法与不确定性量化

喜欢可点赞关注,并收藏,您的支持就是我的写作的动力

物理信息驱动深度学习方法与不确定性量化论文总结

方法综述

量化预测的不确定性,如来自噪声数据和未知项的不确定性,对于基于神经网络的预测模型具有重要意义。 然而,内嵌物理知识神经网络中没有内置不确定度量化(UQ),这可能会限制一些需要高可靠性的应用。 对于一些UQ问题,生成输出预测的分布更为重要比直接获得解的估计值重要。 对此,Yang等[1,2]对通过结合生成对抗网络与基于物理的损失函数对系统中不确定性进行了量化,其中,隐藏层变量被构造为概率表示,然后对模型进行训练。 而系统的物理信息编码到损失函数而不是鉴别器,没有充分挖掘adversarial inference的潜力。由此,Daw等人[3]提出了一个基于物理信息鉴别器的GAN框架,其中物理定律被编码到两个生成器和鉴别器模型中。 此外,在深度学习中贝叶斯方法也是量化UQ的重要方法[4,5,6]。 Yang等人[7]结合了贝叶斯神经网络和内嵌物理知识神经网络能够进行预测同时量化出给定的噪声数据下的不确定性,其中,将先验概率分布引入在网络权重中,然后采用变分inference对权重近似inference,但引入贝叶斯方法带来了更多的参数和更多的计算成本。 为此,dropout被用来估计[8]的不确定性,其中任意将多项式混沌与内嵌物理神经网络相结合,求解随机偏微分方程问题。 在目前的研究,主要集中在将GAN、贝叶斯方法法或dropout与内嵌物理神经网络相结合,量化预测不确定性。

[1] Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, Journal of Computational Physics 394 (2019) 136–152.
[2] L. Yang, D. Zhang, G. E. Karniadakis, Physics-informed generative adversarial networks for stochastic differential equations, SIAM Journal on Scientific Computing 42 (1) (2020) A292–A317.
[3] A. Daw, M. Maruf, A. Karpatne, Pid-gan: A gan framework based on a physics-informed discriminator for uncertainty quantification with physics, in: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 237–247.
[4] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, M. Bennamoun, Hands-on bayesian neural networks–a tutorial for deep learning users, arXiv preprint arXiv:2007.06823.
[5] E. Goan, C. Fookes, Bayesian neural networks: An introduction and survey, in: Case Studies in Applied Bayesian Data Science, Springer, 2020, pp. 45–87.
[6] A. G. Wilson, P. Izmailov, Bayesian deep learning and a probabilistic perspective of generalization, Advances in neural information processing systems 33 (2020) 4697–4708.
[7] L. Yang, X. Meng, G. E. Karniadakis, B-pinns: Bayesian physics-informed neural networks for forward and inverse pde problems with noisy data, Journal of Computational Physics 425 (2021) 109913.
[8] D. Zhang, L. Lu, L. Guo, G. E. Karniadakis, Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems, Journal of Computational Physics 397 (2019) 108850.

不确定性与内嵌物理深度学习方法结合论文清单

  • Psaros A F, Meng X, Zou Z, et al. Uncertainty Quantification in Scientific Machine Learning: Methods, Metrics, and Comparisons[J]. arXiv preprint arXiv:2201.07766, 2022.
    综述论文
  • Zhang D, Lu L, Guo L, et al. Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems[J]. Journal of Computational Physics, 2019, 397: 108850.
  • Zhu Y, Zabaras N, Koutsourelakis P S, et al. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data[J]. Journal of Computational Physics, 2019, 394: 56-81.
  • Yang L, Meng X, Karniadakis G E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data[J]. Journal of Computational Physics, 2021, 425: 109913.
  • Gao Y, Ng M K. Wasserstein generative adversarial uncertainty quantification in physics-informed neural networks[J]. Journal of Computational Physics, 2022: 111270.
  • Yang L, Zhang D, Karniadakis G E. Physics-informed generative adversarial networks for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2020, 42(1): A292-A317.
  • Molnar J P, Grauer S J. Flow field tomography with uncertainty quantification using a Bayesian physics-informed neural network[J]. Measurement Science and Technology, 2022.
  • Daw A, Maruf M, Karpatne A. PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 237-247.
  • Yang Y, Perdikaris P. Adversarial uncertainty quantification in physics-informed neural networks[J]. Journal of Computational Physics, 2019, 394: 136-152.
  • 28
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
深度学习在偏微分方程求解中的应用是近年来的热点研究方向之一。其中,Deep Ritz、Galerkin、PINN 等是比较常见的方法。 Deep Ritz 方法是一种通过神经网络逼近 PDE 解的方法。它的基本思想是将 PDE 转化为一个最小化函数的问题,然后用神经网络来逼近这个最小化函数的解。具体来说,Deep Ritz 方法通过构建一个包含多层隐藏层的神经网络来逼近解,其中隐藏层的数量和神经元的个数可以根据具体问题进行调整。然后,将神经网络的输出作为 PDE 的解,通过梯度下降等优化算法来最小化误差,从而得到 PDE 的解。 Galerkin 方法是一种将 PDE 进行离散化后,通过解离散化后的代数方程组来求解 PDE 的方法。具体来说,Galerkin 方法将 PDE 中的未知函数和测试函数(通常选取一组正交基)展开为有限维空间中的线性组合,并将 PDE 中的微分算子作用于测试函数上,最终得到一个代数方程组。通过求解这个方程组,就可以得到 PDE 的解。 PINN(Physics-Informed Neural Networks)方法是一种将 PDE 和数据拟合结合的方法。具体来说,PINN 方法通过将 PDE 转化为一个有约束条件的最小化问题,然后用神经网络来逼近这个最小化函数的解。同时,PINN 还会利用已知的一些数据点来进一步约束神经网络的输出,从而得到更加准确的 PDE 解。 总之,深度学习在偏微分方程求解中的应用是非常广泛的,有着很大的潜力和发展前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pinn山里娃

原创不易请多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值