Physics-informed neural network for ultrasound nondestructive quantification of surface breaking

论文信息

题目:Physics-informed neural network for ultrasound nondestructive quantification of surface breaking cracks

作者及单位:

期刊、会议:

时间:

论文地址:论文链接

代码:代码链接

基础

摘要

我们的PINN是监督对现实超声表面声波数据的监督学习采集频率为5 MHz。超声波表面波数据表示为金属板顶表面的表面变形,用激光振动法测量。利用声波波动方程的物理信息,利用自适应激活函数加速了PINN的收敛。自适应激活函数在激活函数中使用了一个可伸缩的超参数,该超参数经过优化,可以在网络拓扑结构发生动态变化时获得最佳性能

论文动机

  • 近年来,波场成像技术得到了广泛的应用,并逐渐成为超声无损评价研究的标准工具.
  • PINN的提出能够通过数据进行模型训练学习到物理信息,从而能解决了超声波频率下的波场成像问题.
  • 利用自适应的激活函数加速

Main contributions:

Related Work

问题背景与定义

Ultrasonic surface acoustic wave data

在这里插入图片描述

Problem setup and Physics Informed Neural Network (PINN)

为了描述裂缝的位置和范围,我们假设速度, v ( x , y ) v(x, y) v(x,y) 波的关键特性. 研究了控制声波传播方程的二阶线性偏微分方程
u t t = v 2 ( x , y ) Δ u , x ∈ Ω ,  and  t ∈ [ 0 , T ] ( 1 ) u_{t t}=v^{2}(x, y) \Delta u, \quad x \in \Omega, \text { and } t \in[0, T](1) utt=v2(x,y)Δu,xΩ, and t[0,T](1)
Here, we are given measurements u and want to learn v(x; y) that best describes equation (1).

本文方法

在这里插入图片描述

PINN for ultrasonic surface acoustic wave equation

  • 构建NN
  • 构建loss
    f : = u t t − v 2 ( x , y ) Δ u f:=u_{t t}-v^{2}(x, y) \Delta u f:=uttv2(x,y)Δu
    M S E = λ M S E u + M S E f M S E=\lambda M S E_{u}+M S E_{f} MSE=λMSEu+MSEf
    M S E u = 1 N u ∑ i = 1 N u ∣ u ( t u i , x u i , y u i ) − u i ∣ 2 M S E_{u}=\frac{1}{N_{u}} \sum_{i=1}^{N_{u}}\left|u\left(t_{u}^{i}, x_{u}^{i}, y_{u}^{i}\right)-u^{i}\right|^{2} MSEu=Nu1i=1Nuu(tui,xui,yui)ui2

Adaptive activation function

In the adaptive activation method, Jagtap et al. [21] introduced the hyper-parameter a > 0 in the activation function as σ ( a L k ( x k − 1 ) ) \sigma\left(a \mathcal{L}_{k}\left(x^{k-1}\right)\right) σ(aLk(xk1)),where a is subsequently learned by minimizing the loss function along with the weights and biases.Thus, the definition of optimization problem for a is expressed as
a ∗ = arg ⁡ min ⁡ a ∈ R + \ { 0 } ( J ( a ) ) a^{*}=\underset{a \in \mathbb{R}^{+} \backslash\{0\}}{\arg \min }(J(a)) a=aR+\{0}argmin(J(a))
The parameter a is updated as
a m + 1 = a m − η l ∇ a J m ( a ) a^{m+1}=a^{m}-\eta_{l} \nabla_{a} J^{m}(a) am+1=amηlaJm(a)
To accommodate the effect of learning factor [22], responsible for convergence to global minima, the hyper-parameter a is multiplied by a scale factor n > 1 and the final activation function is recovered as
σ ( n a L k ( x k − 1 ) ) \sigma\left(n a \mathcal{L}_{k}\left(x^{k-1}\right)\right) σ(naLk(xk1))
The effect of a on the activation function defined by hyperbolic tangent (tanh) is shown in Figure 2b.

Data preconditioning

波场数据是通过实验装置获得的,容易受到随机噪声和环境噪声的影响。为了滤除这些随机噪声,我们采用了主成分分析(PCA)方法. PCA是一种无监督提取高维数据方差结构并将数据投影到子空间中以使投影数据方差最大化的方法.
在这里插入图片描述
将PCA应用于45度入射角数据集的结果如图3所示。图3a是45o数据集在11点38分时原始数据的快照。图3b是累计解释方差和主成分的图. 这量化了在前N个成分中包含240维方差的总量。图3b清楚地显示了前45个compoent包含大约95%的方差. 图3c代表在discard the componets close to zero过滤的data. 从图3d可以清楚地看出,经过过滤的数据比原始数据更加平滑.

数值实验

在这里插入图片描述
图4a和图4b为在10:8′s时的波场快照,分别来自真实和PINN模拟数据。图4c显示了从图4a和图4b在x = 6 mm处提取的数据(真实和恢复的PINN)痕迹的对比. 这表明从PINN模拟数据中恢复的轨迹与真实数据有很好的一致性. 图4d提供了恢复波速度和训练次数的图。声速收敛到2.9 mm= s,这基本上是铝合金表面声波的速度,由无损测试计算得出[24]. 用固定和变量A计算的损失函数比较如图4e所示. 图4e清楚地表明,使用自适应激活函数加快了收敛速度。图4f显示了a与epoch的对比图.
在这里插入图片描述
在这里插入图片描述

总结:

对各种材料科学问题进行超声无损定量分析是非常重要的. PINN模型对于解决这类问题非常有帮助,因为成本和物流问题阻碍了获取真实数据进行此类分析. 为了支持我们的主张,我们引入了一个优化的PINN模型来表征铝合金基材的表面断裂裂纹. 在这篇论文中,我们假设在材料表面传播的波的速度可能是裂缝识别的关键指标. 为了证明我们的假设,我们设计和测试了一个由声波传播的物理信息的深度神经网络. 本研究提出的PINN是为了通过发现数据驱动的偏微分方程来推断系统. 这是通过计算波在金属板中随空间变化的速度来实现的.

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pinn山里娃

原创不易请多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值