pytorch超级详细的安装教程

本文详细记录了在CUDA 12.0环境下,作者因升级CUDA导致原有PyTorch环境变化,如何重新安装并配置PyTorch,包括使用conda、清华大学源镜像、CUDA版本确认及解决网络问题的过程。最终成功验证了GPU环境的使用。

pytorch超级详细的安装教程

此处为更新内容```````

最近使用之前文章中配置的torch环境安装一些包配置一个新的深度学习环境,之前使用文章中的方法配置的pytorch环境一直没出过什么问题,但是在配置这次的深度学习环境时安装的某一个包,直接修改了我原本的pytorch环境,然后导致环境从GPU变为CPU,没办法我只能重新安装pytorch环境。重新安装的过程中,我再次查看了我的CUDA版本,我的CUDA版本已经从之前的11.6升级为12.0,当我再次用下面清华源的方法安装pytorch时出现了问题,安装为CPU版本,不过这条博客写于我之前安装pytorch用于记录安装步骤的时候,当时因为网络的原因,安装pytorch会非常慢,因此我在网上查询了清华源安装pytorch的方法,感觉很好用。我也不清楚现在为什么不能使用了。因此我这边尝试了用基本的方法来安装,就是在下面创建完命令之后

conda create -n torch2 python=3.8

查询一下CUDA版本,我的cuda已经升级到,不过cuda兼容性好,我们依旧可以使用官网11.8版本的命令来安装pytorch在这里插入图片描述Anaconda官网
选择以下选项
在这里插入图片描述然后在命令行里面激活torch2环境
之后输入在pytorch官网获得的命令
需要注意的是
之前配置过清华源使用pytorch官网的命令会报错,我这边出现了错误,我觉得是清华源是国内的镜像,pytorch是国外的,因此连接会出现问题,我找到的解决方案是
将之前的.condarc文件夹移除掉,实验结果是可以的

在这里插入图片描述根据提示输入y
在这里插入图片描述等待......
这里说一下当时我为什么使用清华源镜像
如果执行到这一步会发现,这个下载是十分缓慢的,但是如果有VPN的话下载会快很多,不过这也是之前为什么要找清华源镜像的原因,使用清华源的镜像就可以不使用VPN来下载了,速度很快。使用老方法下载失败了。只能使用现在的方法了。
还有一点就是之前配置过清华源使用pytorch官网的命令会报错,我这边出现了错误,我觉得是清华源是国内的镜像,pytorch是国外的,因此连接会出现问题,我找到的解决方案是
将之前的.condarc文件夹移除掉,实验结果是可以的
安装完成,进入测试阶段
(1)在命令行左边为 pytorch 环境中,输入 python

(2)之后,输入 import torch,如果没有报错,意味着 PyTorch 已经顺利安装了

(3)接下来,输入 torch.cuda.is_available(),如果是 True,意味着你可以使用 GPU。
在这里插入图片描述
我同时也测试了不挂VPN安装环境的情况,我创建了torch1这个环境,上面成功的情况是torch2,失败了。也有是因为挂了VPN而导致不能下载安装的,这个看运气,多实验几次。
在这里插入图片描述在这里插入图片描述

更新内容结束```````

第一次安装的时候安装了差不多有一整天,还安装失败了。这次安装的速度很快。
首先是Anaconda的下载,我用的是上学期学python的时候老师之前给的安装包,很快就安装好了,或者去官网去下载Anaconda也挺快,链接如下:
Anaconda官网
其次是Anaconda安装,整个下载过程都是一路next,我只是把下载的路径改变了一下。默认路径是C盘,我调整到了其他盘。
安装完整后,在看是菜单处看到新添加的东西
在这里插入图片描述
打开这个Anaconda Prompt应用进入之后是以(base)开头
在这里插入图片描述
接下来就是创建pytorch这个包了
我的版本是3.8,所以下面也也安装3.8版本的,pytorch 是后边建立里的命名
如果不清楚自己的python版本,win+R,打开cmd控制台,输入python就可以看到自己的版本信息。
在这里插入图片描述

conda create -n pytorch python=3.8

之后,弹出提示,输入 y,即可安装。
安装成功后,输入以下指令:

conda info --envs

在这里插入图片描述
接下来我们要进入到pytorch环境中去

conda activate pytorch

在这里插入图片描述

接下来是安装pytorch环境
pytorch官网
在这里插入图片描述

这里面我是按照一个blog用的清华的一个镜像安装的,相对于去年我第一次下载安装pytorch来说,速度很快
下载的时候有显卡用显卡,没显卡就只能用cpu了
如何查看自己的CUDA版本号
在cmd窗口中输入这个命令

nvidia-smi

在这里插入图片描述
接下来就需要导入清华的镜像了。这里我参考的是其他的博客
.condarc
插播.condarc知识点:
.condarc以点开头,一般表示 conda 应用程序的配置文件,在用户的家目录(windows:C:\users\username\,linux:/home/username/)。但对于.condarc配置文件,是一种可选的(optional)运行期配置文件,其默认情况下是不存在的,但当用户第一次运行 conda config命令时,将会在用户的家目录创建该文件。这个shell命令第一次安装的情况下,你需要先执行才会看到.condarc文件,用记事本打开

在这里插入图片描述
讲下面的代码贴到文件中去

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
  - defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

然后继续安装pytorch
我的是这个:
在这里插入图片描述

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

这里我参考了其他的博客,将-c pytorch去掉了。安装速度很快。我第一次安装安装一整天,这个安装大概是分钟左右
复制下面的代码,之后,在开始菜单中,打开 Anaconda Prompt,查看最左边括号中是 base 还是 pytorch。如果是 [base],使用 conda activate pytorch 进入 pytorch 环境中。之后粘贴即可。

接下来只需要按照提示输入就可以了
验证是否安装成功(最激动人心的时刻)
(1)在命令行左边为 pytorch 环境中,输入 python

(2)之后,输入 import torch,如果没有报错,意味着 PyTorch 已经顺利安装了

(3)接下来,输入 torch.cuda.is_available,如果是 True,意味着你可以使用 GPU。
在这里插入图片描述注意更新一下
在上述测试步骤的第二步中,只有当输入 torch.cuda.is_available(),调用函数时带上()才会显示函数的输出,如果是 True,意味着你可以使用 GPU
在这里插入图片描述

这样就是成功了

pycharm

因为shell输入代码不带有提示,使得对新手很不友好。我们将带有pytorch的anaconda导入到pycharm中去
在这里插入图片描述
这里即为导入了带有pytorch的anaconda
接下里我们来验证一下
在这里插入图片描述
输入上面的代码,当显示为True时,即为导入成功。
在这里插入图片描述

### PyTorch GPU 远程服务器安装教程 #### 查看服务器支持的 CUDA 版本 在远程服务器上配置 PyTorch 的第一步是确认服务器所支持的 CUDA 版本。通过执行 `nvidia-smi` 命令来获取显卡驱动及相关信息[^2]。如果显示 CUDA Version: 11.4,则表明当前服务器能够兼容的最大 CUDA 版本为 11.4。 #### 创建 Conda 虚拟环境并激活 为了隔离不同项目的依赖关系,建议使用 Anaconda 来创建独立的虚拟环境。具体操作如下: ```bash conda create -n pytorch_env python=3.8 conda activate pytorch_env ``` #### 安装适合 CUDA 版本的 PyTorch 根据官方文档推荐的方式,可以通过以下命令安装与特定 CUDA 版本匹配的 PyTorch 库。假设服务器支持 CUDA 11.4,则可运行以下指令完成安装[^1]: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.4 -c pytorch -c nvidia ``` 或者采用 pip 方式进行安装(需提前确保 pip 已更新至最新版本): ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu114 ``` #### Jupyter Notebook 配置及远程访问设置 为了让用户能够在浏览器端便捷地调试代码,通常会在服务器上部署 Jupyter Notebook 或 Lab 环境。以下是具体的配置流程[^3]: 1. **安装 jupyter** ```bash conda install jupyterlab ``` 2. **生成密码保护文件 (optional but recommended)** 设置密码以增强安全性。 ```python from notebook.auth import passwd passwd() ``` 3. **启动服务并将日志重定向到 nohup 文件以便后台运行** ```bash nohup jupyter lab --ip='*' --port=8888 --allow-root &> /path/to/nohup.out & ``` 4. **SSH 隧道建立本地映射** 使用 SSH Tunneling 技术实现安全连接。 ```bash ssh -N -f -L localhost:9000:localhost:8888 user@remote_host_address ``` 5. 打开浏览器输入地址 http://localhost:9000 即可通过隧道进入远端笔记本界面。 #### 解决权限不足错误 当尝试修改 `/usr/local/share/jupyter` 下的内容时可能会遇到 `[Errno 13] Permission denied` 错误提示[^4]。此时有两种解决办法: - 更改目录所属权给当前登录账户: ```bash sudo chown -R $USER:$USER ~/.local/share/jupyter/ ``` - 或者切换成超级管理员身份重新执行相关命令前缀加 `sudo`。 --- ###
评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

henu-于笨笨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值