一. 前缀和的简单介绍
1.前缀和的数组型简单定义
对于数组nums来说,前缀和pre[i] = pre[i-1] + nums[i],即每个位置上存储的是前i个数组元素的和,用数学公式表示为:
数组的典型案例:
其他类型的前缀和多是最终能变成和数量相关,即转换成int[] 数组类型。
那么,对于后缀和是一样的道理。
2.前缀和的典型使用场景/触发关键词
在一些题目或者场景中,出现了子数组*,连续一段区间,并且和求数量或者判断数量相关,很大程度上可以向前缀和的方去思考。
二. 使用前缀和的经典案例
1.leetcode1413 逐步求和得到正数的最小值
给你一个整数数组 nums 。你可以选定任意的 正数 startValue 作为初始值。
你需要从左到右遍历 nums 数组,并将 startValue 依次累加上 nums 数组中的值。
请你在确保累加和始终大于等于 1 的前提下,选出一个最小的 正数 作为 startValue 。
输入:nums = [-3,2,-3,4,2]
输出:5
解释:如果你选择 startValue = 4,在第三次累加时,和小于 1 。
累加求和
startValue = 4 | startValue = 5 | nums
(4 -3 ) = 1 | (5 -3 ) = 2 | -3
(1 +2 ) = 3 | (2 +2 ) = 4 | 2
(3 -3 ) = 0 | (4 -3 ) = 1 | -3
(0 +4 ) = 4 | (1 +4 ) = 5 | 4
(4 +2 ) = 6 | (5 +2 ) = 7 | 2
对于本题,可以转化为求一类最小值问题,即前缀和中出现的最小值,即在遍历整个数组时,可能出现的最小值,即
只要最小值能够满足要求,那么在其他位置上也可以满足要求,上述出现的sum(1)~sum(n)即为典型的前缀和的概念,换个思路,此题目在求能使得数组通过的最小宽度,即
前缀和解答
class Solution {
public int minStartValue(int[] nums) {
int[] dp = new int[nums.length];
int min = nums[0];
dp[0] = nums[0];
for(int i = 1; i < nums.length; i++){
dp[i] += dp[i-1]+nums[i];
if(dp[i] < min){
min = dp[i];
}
}
if(min > 0) return 1;
return 1-min;
}
}
动态规划空间优化
对于上述解答来说,由于当前值只和nums[i]和上一个值有关,用两个变量保存交替前进即可
class Solution {
public int minStartValue(int[] nums) {
int min = 0;
int pre = 0;
for(int i = 0; i < nums.length; i++){
pre += nums[i];
if(pre <= min){
min = pre;
}
}
if(min > 0) return 1;
return 1-min;
}
}
本题小结:(1)此题是前缀和的最简单应用&#