前言
使用tensorboard可以方便的记录模型训练过程中的情况(精度,损失,中间结果,特征图,heatmap等等),同时,tensorboard生成的文件,可以在浏览器查看,也可以将损失,精度等以csv或者json格式下载,方便后续绘图或分析等操作。
#step1:倒入SummaryWriter
from tensorboardX import SummaryWriter
# from torch.utils.tensorboard import SummaryWriter
import numpy as np
#step:2初始化一个实例writer
writer = SummaryWriter('logs')#参数为指定存储路径
for i in range(100):
#step:3记录loss
#当数据只需要存储一个时
writer.add_scalar("test/sin",np.sin(i),i)
#当数据不止一个时使用
writer.add_scalars("test1",{"sin":np.sin(i),"cos":np.cos(i)},i)
#step4:close
writer.close()
总结
tensoroard追踪模型训练过程。