笔记--邹老师的课

第一节课笔记

主要学习内容
  1. 机器学习的概念
  2. 机器学习的数学基础知识
机器学习的概念
什么是机器学习
  • 对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适、优质、大量的经验E,该程序对于任务T的性能逐步提高。
  • 机器学习对象: 任务-经验-性能
  • 任务不断进行,经验的积累会带来计算性能的提升
人类的学习
  • 从无知到有知: 掌握接受信息的特征
  • 有监督学习:判定“月亮”
  • 无监督学习:创造“阅兵”
  • 增强学习:走路、踢球
  • 半监督学习
机器学习可以解决
  • 给定数据的预测
  • 数据清洗/特征选择
  • 确定算法模型/参数优化
  • 结果预测
机器学习一般流程
  • 数据收集-数据清洗-特征工程-数据建模-模型的使用(番茄炒鸡蛋)
  • 其中比较重要的是:数据清洗与特征工程
  • 建模:根据已有数据并可能有标记值,提取出数据中的特征向量,使用某一个机器学习算法,对模型进行训练得出模型。
  • 预测:利用新数据并可能有标记值,提取出数据中的特征向量,根据模型对新的数据进行预测。
数学分析复习
  1. 泰勒展开
  2. 导数(方向导数、梯度
  3. Taylor公式
  4. Γ \Gamma Γ函数
  5. 凸函数定义
  6. 微分
  7. 概率论(下节课)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值