第一节课笔记
主要学习内容
- 机器学习的概念
- 机器学习的数学基础知识
机器学习的概念
什么是机器学习
- 对于某给定的任务T,在合理的性能度量方案P的前提下,某计算机程序可以自主学习任务T的经验E;随着提供合适、优质、大量的经验E,该程序对于任务T的性能逐步提高。
- 机器学习对象: 任务-经验-性能
- 任务不断进行,经验的积累会带来计算性能的提升
人类的学习
- 从无知到有知: 掌握接受信息的特征
- 有监督学习:判定“月亮”
- 无监督学习:创造“阅兵”
- 增强学习:走路、踢球
- 半监督学习
机器学习可以解决
- 给定数据的预测
- 数据清洗/特征选择
- 确定算法模型/参数优化
- 结果预测
机器学习一般流程
- 数据收集-数据清洗-特征工程-数据建模-模型的使用(番茄炒鸡蛋)
- 其中比较重要的是:数据清洗与特征工程
- 建模:根据已有数据并可能有标记值,提取出数据中的特征向量,使用某一个机器学习算法,对模型进行训练得出模型。
- 预测:利用新数据并可能有标记值,提取出数据中的特征向量,根据模型对新的数据进行预测。
数学分析复习
- 泰勒展开
- 导数(方向导数、梯度)
- Taylor公式
- Γ \Gamma Γ函数
- 凸函数定义
- 微分
- 概率论(下节课)