cf1096 E(概率期望+贡献)
题意:
给一个排列,一些数未知,问逆序对个数期望值
思路:
对于期望我们一般考虑期望 d p dp dp或者直接贡献,即要么利用期望的线性性,要么直接公式,而对于 p i p_i pi,一般都是已知方案除以总方案。这题显然可以拆成三种贡献
- 已知数之间
- 未知数之间
- 已知与未知之间
由 E ( x ) = p i x i E(x)=p_ix_i E(x)=pixi
容易得出第一种就是 m ! m ! ∗ 两 两 之 间 的 逆 序 对 \frac{m!}{m!}*两两之间的逆序对 m!m!∗两两之间的逆序对,显然可以树状数组得出
第二种是经典问题,等价于全排列逆序对期望求解,暴力枚举两两未知数,期望显然为1/2,由期望线性性得答案为 s u m ∗ ( s u m − 1 ) / 4 sum*(sum-1)/4 sum∗(sum−1)/4
第三个也很简单,枚举每一个已知数,考虑前后的贡献即可,设已知比他大的数的个数为 c n t cnt cnt,算出未知的比他的为x,前面的空格为y,由 E ( x ) = p i x i E(x)=p_ix_i E(x)=pixi贡献就是 y s u m ∗ 1 ∗ x \frac{y}{sum}*1*x sumy∗1∗x,都可以预处理(偷懒用了树状数组),然后后面比他小的同理,就解决了
#include<bits/stdc++.h>
#define lowb(x) (x&(-x))
using namespace std;
typedef long long ll;
const int maxn=2e5+5;
const ll mod=998244353;
int n,pi,c[maxn],a[maxn],pre[maxn],sum;
ll fac[maxn];
void add(int x,int val){
for(int i=x;i<=n;i+=lowb(i)){
c[i]+=val;
}
}
ll mypow(ll a,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}
int ask(int x){
int ans=0;
for(int i=x;i;i-=lowb(i)){
ans+=c[i];
}
return ans;
}
int main(){
ll ans=0;
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",&a[i]);
for(int i=1;i<=n;++i){
if(a[i]!=-1){
ans+=ask(n)-ask(a[i]);
add(a[i],1);
}else{
sum++;
}
pre[i]=pre[i-1]+(a[i]==-1);
if(ans>=mod)ans-=mod;
}
ll inv=mypow(sum,mod-2);
fac[1]=1;
for(int i=2;i<=sum;++i)fac[i]=fac[i-1]*i%mod;
ll ans1=1ll*sum*(sum-1)%mod*mypow(4,mod-2)%mod;
ans=(ans+ans1)%mod;
for(int i=1;i<=n;++i){
if(a[i]!=-1){
int cnt=ask(n)-ask(a[i]);
ll x1=1ll*pre[i]*(n-a[i]-cnt)%mod*inv%mod;
int cnt2=ask(a[i]-1);
ll x2=1ll*(sum-pre[i])*(a[i]-1-cnt2)%mod*inv%mod;
ans=(ans+x1+x2)%mod;
}
}
cout<<ans<<"\n";
return 0;
}