logistic回归

本文深入探讨logistic回归的运用,包括如何计算概率以及解决多分类问题。首先,介绍了通过选择合适的预测函数(如h函数)来预判数据结果的重要性。接着,构建了损失函数(Cost函数)以衡量预测与实际类别的偏差,并通过优化算法(如梯度下降法)寻求最小化误差。文章进一步讲解了logistic回归在二分类和多分类情境下概率的计算方法。
摘要由CSDN通过智能技术生成

过程
1、找到一个合适的预测函数,一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程非常关键,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概形式”,比如是线性函数还是非线性函数。
2、构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他形式。综合考虑所有训练数据的“损失”,将cost求和或者求平均,记为J(w)函数,表示所有训练数据预测值与实际类别的偏差。
3、J(w)函数值越小表示预测函数越准确(即函数h越准确),所以要想办法求解函数J(w)的最小值。如梯度下降法等方法求解。

logistic回归的使用

# 逻辑斯蒂回归回归,用于分类而不是回归
import numpy as np

from sklearn.linear_model import LogisticRegression,LogisticRegressionCV

from sklearn import datasets

from sklearn.model_selection import train_test_split
np.logspace(-4,4,100)

在这里插入图片描述

LogisticRegressionCV(Cs = [0.001,0.01,0.1,1,5,10,100])

在这里插入图片描述

X,y = datasets.load_iris(True)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size = 0.2)
lr = LogisticRegression()

lr.fit(X_train,y_train)

# 分类问题,准确率 96.6%
lr.score(X_test,y_test)

在这里插入图片描述

# 类别分3类
np.unique(y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值