回归

目标:预测宝可梦的CP值
根据已有的宝可梦进化前后的信息,预测宝可梦进化后的CP值
方案:确定 Senario、Task和Model
Senario
根据已有的数据确定Senario,有用宝可梦进化前后CP值的数据,输入是进化前的宝可梦(包括它的各种属性),输出是进化后的宝可梦的CP值,因此数据是有标记的,使用的Senario是有监督学习。
Task
根据想要的函数输出类型,确定Task,此任务中预期得到宝可梦进化之后的CP值,是一个数列,因此使用的Task是回归。
model
模型的选择多样,此处选择非线性模型。
设定具体参数
X X X:表示一个宝可梦,用下标表示该宝可梦的某种属性。
X c p X_{cp} Xcp:表示宝可梦进化前的CP值。
X s X_{s} Xs:表示该宝可梦是属于哪一种物种。
X h p X_{hp} Xhp:表示该宝可梦的HP值即生命值是多少。
X w X_{w} Xw:表示该宝可梦的重量。
X h X_{h} Xh:表示该宝可梦的高度。
f ( ) f() f():表示要寻找的函数。
y y y:表示函数的输出,即宝可梦进化后的CP值,是一个数列。
在这里插入图片描述
回归的过程:
机器学习的三个步骤:
定义一个模型即函数集
定义一个损失函数用于评估该函数的好坏
找到最好的函数

第一步:建立Model (function set)
选择函数模型时,需要凭借经验来试模型。
如线性模型: y = b + w ⋅ X c p y = b+w\cdot X_{cp} y=b+wXcp
y y y代表进化后的CP值, X c p X_{cp} Xcp代表进化前的CP值, w w w b b b代表未知参数,根据不同的 w w w b b b,可以确定不同的函数。
y = b + w ⋅ X c p y = b+w\cdot X_{cp} y=b+wXcp这个抽象出的式子就是模型,是以上这些具体化的函数的集合,即函数集:
在这里插入图片描述
第二步:损失函数 评定模型好坏
参数说明:
x i x^{i} xi:用上标表示一个完整的对象的编号, x i x^{i} xi表示第 i i i只宝可梦(下标表示该对象中的组成部分)
y ^ i \hat{y}^{i} y^i:用 y ^ \hat{y} y^表示一个实际观察到的对象的输出,上标为 i i i表示是第 i i i个对象
在这里插入图片描述
损失函数(Loss function)
衡量函数集中某一个函数的好坏,需要一个评估函数,即损失函数:
L ( f ) = L ( w , b ) L(f) = L(w,b) L(f)=L(w,b)
由于 f : y = b + w ⋅ x c p f:y = b+w\cdot x_{cp} f:y=b+wxcp,即 f f f是由 b b b w w w决定的,因此输入 f f f,就等价于输入 b b b w w w,因此损失函数实际上是在衡量一组参数的好坏。
最常用的方法是采用类似于方差和的形式来衡量参数的好坏,即预测值与真值差的平方和;这里真正的数值减去估测数值的平方,叫做估测误差,Estimation error,将10个估测误差合起来就是loss function
在这里插入图片描述
如果 L ( f ) L(f) L(f)越大,说明该function表现得越不好; L ( f ) L(f) L(f)越小,说明该function表现得越好
在这里插入图片描述
Loss function可视化
下图是Loss function的可视化,该图中的每一个点都代表一组 ( w , b ) (w,b) (w,b),即对应一个函数,而该点的颜色对应着的损失函数的结果 L ( w , b ) L(w,b) L(w,b),他表示该点对应函数的表现的好坏,颜色偏红色戴白哦损失的数值越大,偏蓝色代表损失的数值越小。
在这里插入图片描述
第三步:找出最好的函数
确定损失函数之后,就要从函数集中选出最好的函数。
挑选最好的函数,公式如下:
在这里插入图片描述
即使得 L ( f ) = L ( w , b ) = L o s s L(f) = L(w,b) = Loss L(f)=L(w,b)=Loss最小的 f f f ( w , b ) (w,b) (w,b),就是要找的 f ∗ f^{*} f ( w ∗ , b ∗ ) (w^{*},b^{*}) (w,b)(极大似然估计的思想)
在这里插入图片描述
这里可以采用梯度下降的方法。
Gradient Descent 梯度下降
只要 L ( f ) L(f) L(f)是可微分的,梯度下降都可以对 f f f进行处理,找到表现较好的参数。
单个参数:
以只带单个参数 w w w的损失函数 L ( w ) L(w) L(w)为例,首先保证 L ( w ) L(w) L(w)是可微分的, w ∗ = a r g m i n w L ( w ) w^{*} = arg \underset{w}{min}L(w) w=argwminL(w),目标是找到使得该loss最小的$ w^{} , 实 际 上 是 寻 找 切 线 L 斜 率 为 0 的 全 局 最 小 值 点 穷 举 所 有 ,实际上是寻找切线L斜率为0的全局最小值点 穷举所有 ,线L0w 的 值 , 去 找 使 得 l o s s 最 小 的 的值,去找使得loss最小的 使lossw^{} 也 可 以 , 但 是 效 率 极 低 , 而 梯 度 下 降 就 是 用 来 提 高 效 率 。 首 先 随 机 选 取 一 个 初 始 的 点 也可以,但是效率极低,而梯度下降就是用来提高效率。 首先随机选取一个初始的点 w^{0} ( 尽 可 能 的 接 近 (尽可能的接近 w^{*} ) 计 算 ) 计算 L 在 在 w=w^{0}$

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值