关于小微商户反欺诈监控指标的内容参考

还款计划的相关的监控是整个信贷中非常核心的关键指标,通过还款计划表的观测我们不单单能了解客户的还款情况,还能通过还款计划表来做一些反欺诈的监控,这个具体的落地是怎么样的?
今天再来看看由番茄风控带来的内容——通过还款计划数据来设计小微商户的监控报表指标,来进行相关的预警逻辑判断。
案例背景为:
在某场景贷款业务中,通常存在三方公司,这里由金融机构、商户和客户。客户在商户那里消费并且发生贷款,贷款的资金则由金融机构进行前期垫付,然后金融机构再与商户结算。于是在这样的场景中,就非常容易发生商户跟客户互相勾结,一起诈骗金融机构的案例。具体的场景业务如3C业务,医美场景贷款业务等。
这样互相勾结,在之前许多的新闻中屡次见诸报端。这样的诈骗场景也是非常多的场景贷业务中最重要的防范风险。如何做好商户端的风险防范,今天来通过还款计划表来发现风险端倪。
相关案例:通过具体的还款时间,来设计具体的反欺诈监控报表设计
以某医美贷款的商户A为例,在相关的还款计划表中,取出在商户A中所申请的每一个用户所对应的具体还款日的数据。计算在该具体的商户维度下,每一个还款日中实际还款的客户个数。
然后再根据每日实际还款的客户数据进行排序(降序),取出排在前三位的实际还款天数,并计算其对应的客群占比。以表中数据为例,top1~3的占比分别是16%、20%、16%。可以发现在这排名前三天的客户中,其实际还款的客户数占比合计到52%。
在这里插入图片描述
52%的占比在相关的欺诈阈值中是一个什么样的数据量?这个数值是过大还是适中,抑或还是正常的数值。解答这个问题,我们得回归到以上的历史数据中进行相关分析。
在以往的数据中,我们了解一个月30天中,前3天的日均业务为,用100%/30*3,所以正常的逻辑是前3天为10%左右,再加上商户可能会做一些活动促销等10%(促销比例),所以根据以上的经验阈值,正常波动情况大概在20%算是比较合理的范围。所以如果超过这个数值范围,在实际的业务中就可能存在数据波动过大的问题。
所以在刚才的具体的案例中,可知该商户前三天的还款客群占比为52%,大大超过了正常的数据波动值,根据这个预警内容,触发了我们具体的商户反欺诈的阈值的监控。
通过以上的分析,商户在具体的监控中触达反欺诈预警,对于这部分商户也同时进入电访结算,后经调查也确认了相关的还款异常的行为。

综上,在运营还款计划进行相关的反欺诈分析时候,步骤如下:
1、取出近1个月,每家商户每一天的还款客户的实还日。

2、商户维度下每个实还日的实还客户数

3、取TOP3实还日的实还客户占比超过某个阈值(参考如前3天每日业绩均分10%,另外加上商户做活动促销10%,合计约20%)的商户做预警
以上内容参考至:
①番茄风控《星球课堂内容》
②番茄风控《全流程风控训练营——贷中模块内容》

~原创文章

end

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

番茄风控

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值