随着科技的不断进步,OCR(光学字符识别)技术在工业应用中扮演着越来越重要的角色。
在实际生产中,OCR技术可在生产流程监控、自动化设备控制、品质控制和物流控制等方面发挥作用,提高生产流水线的产量和质量,降低人工成本。由于识别场景复杂多样,提升字符识别应用效果往往面临着以下难题:
字符识别的效率要求高,容错率低
在工业生产过程中,字符的识别速度在一定程度上影响着生产效率,而由于上游技术操作和生产缺陷,往往导致字符标签产生印刷模糊、标签歪斜、标签污染破损等问题,这就需要OCR技术具备更高的识别精度和速度,能够精准快速完成字符识别,防止不良品流入下个生产环节,为企业规避风险。
字符复杂多样,识别难度高
工业生产中往往会出现不同语言文字、数字、符号等种类繁多的字符组合以及条形码、二维码等不同码制,这就对字符识别系统的通用性提出了更高的要求。
环境干扰强,字符识别难度大
识别过程中因受生产环境、产品材质和工艺、拍摄角度影响,经常会采集到倾斜、模糊等不佳的字符图像,从而导致字符出现畸形、缺失、不清晰和排列紊乱等情况。
需要研发深度参与,操作难度高
复杂场景的OCR系统部署过程中需要研发人员深度参与,多样化、个性化的生产标准就需要字符样本深度学习训练、反复调整参数、收集记录数据,操作门槛高。
一、