图论复习(一)

前言

从图论的基础知识开始复习,本章主要是复习图的额一些基本概念性质内容。


提示:以下图片选自杨映雪老师课堂ppt。

一、笛卡尔积与无序积关系?

笛卡尔积:设A,B为集合,以集合A中的元素为第一元素,以集合B中的元素为第二元素。以这样组成的有序对的集合称作为A与B的笛卡尔积,记作AXB。
笛卡尔积的符号化表示为AXB={<x,y>|x∈A∩x∈B}
无序积:任意两个元素a,b构成的无序对记作(a,b),满足(a,b)=(b,a)。A、B为两个集合。无序积的符号化表示为:
A&B={<x,y>|x∈A∩x∈B}。无序积和笛卡尔积的区别在于无序积满足交换律
示例:无序积计算
无序积

二、无向图与有向图概念

1.无向图G是由一个有序二元组<V,E>,记作G=<V,E>,其中G称作点集,E称作边集。V中的元素称作结点,E中的元素称作边。
无向图

2.有向图G是由一个有序二元组<V,E>,记作G=<V,E>,其中G称作点集,E称作边集。E是笛卡尔积VXV的多重子集。V中的元素称作结点,E中的元素称作边。有向图
孤立点:没有边关联的顶点。

三、图的边和顶点

1.点与边关联的次数:次数取值为0、1、2。
2.n阶图:在图G中,顶点集V的个数为n,|V|=n,|E|=m,则表示为n阶图。
3.n阶零图:如果|V|=n,|E|=0,称为n阶零图。
4.平凡图:如果|V|=1,|E|=0,称为平凡图。
5.平行边:平行边关联与统一对结点,如果是有向边则必须方向相同。
6.结点v的度:与结点v相关联的边的次数为v的度数,出度记为deg+(v),入度记为deg-(v)。
7.悬挂边与悬挂点:结点度为1的点称为悬挂点。与悬挂点相关联的边称为悬挂边。
无向图
上图G中:V5表示孤立点,V4表示悬挂点,e6表示悬挂边,V2顶点的关联次数为4。

四、握手定理

1.定义:图G的结点个数n与边数m之间存在关系:结点的度数之和为边数的2倍
推论1:任意图中:奇度结点必有偶数个
推论2:在有向图中,出度之和=入读之和=边数。
2. 度数序列:由所有结点的度构成的序列。度数序列之和=2m
3.判断度序列可图画:给定一个度数序列判断度数序列能否形成简单图,判断根据必要条件:
1.度数序列之和为偶数,也就是奇度个数为偶数
2.任意一个结点的度数小于等于结点数减一

五、完全图、补图、正则图与子图

1.完全图:简单无向图中,任意两个结点之间都有边相连,则称G为完全图,具有n个结点的完全图记作Kn。无向完全图的边数为:n(n-1)/2
简单有向图中,任意两个结点之间都一对方向相反的边相连,则称G为有向完全图,具有n个结点的有向完全图称之为Dn。边数为n(n-1)
2.k-正则图:在一个无向简单图之中,如果每个节点的度数均为K,则称该图为k-正则图。显然完全图kn是(n-1)正则图。
3.补图:使得图G称为完全图的所添加的边构成的边集的图称之为补图。
4.子图:对于图G和图G1 ,如果图G1中的点和边都包含于图G,那么称图G1为图G的子图。图G为图G1的母图
生成子图:如果V1=V1且E1包含于E,那么称图G1为图G的生成子图(通俗的讲就是G1中包含图G所有的结点,可以不包含所有的边
导出子图:点导出子图也就是导出子图,是根据点导出的。图G1的任意两个结点。在图G中这两个结点相连接的边在图G1中都包含。(简单的说就是图G1中的两个点,在图G中存在的边在图G1同样也存在
导出的子图:由边导出的子图也称导出的子图。也就是由图G中边相关联的结点所导出的子图。

六、图的同构及判断

图的同构:一种双射关系保证邻接点间的邻接关系边的重数不改变。
图同构的判断:必要条件
1.结点数目相同
2.边数相同
3.度序列相同
4.结点的邻结点在两个图中相同:可以对结点的邻接结点进行判断,一个节点的邻接点是2度和3度节点,那么在另一个图中也应该是一样的

七、图的连通性

1.通路:从结点A到达结点B,所经过的结点和边组成的序列称作通路。通路中包含的边数n称作通路长度,当起点和终点相同时称之为回路。2.简单通路:当通路中边互不相同,则称为简单通路。
3.简单回路:如果简单通路满足V0=Vn,则称为简单回路。
4.路径:如果一条通路中结点互不相同,则称为路径。
5.:如果一条回路的起点和内部结点互不相同,则称为圈。长度为k的圈称为k圈。长度为奇数的圈称为奇圈,长度为偶数的圈称为偶圈。
圈中首结点与内部结点不相同
简单通路中互不相同
路径中结点互不相同
6.有向图的强/弱联通:如果有向图两个结点相互可达,则称为强连通图,如果两个结点单向可达则称之为弱连通图。强连通图一定是单向连通图也是弱连通图。

八、二部图

二部图/完全二部图:将图G的结点集划分称两个集合,同时包含图G的边。如果两个结点集之和为图G的结点集,就称作二部图。
完全二部图:指第一个结点集中任意一个元素都与第二个结点集的结点有关联。
二部图判定定理一个无向图G是二部图当且仅当G中没有奇数长度的回路

九、图的矩阵表示

关联矩阵(点与边之间关系)、邻接矩阵(点与点之间关系)、可达矩阵(图的连通情况)

1.关联矩阵

关联矩阵分为:无向图的关联矩阵、无环有向图的关联矩阵
无向图的关联矩阵


无环有向图的关联矩阵

2.邻接矩阵

有向图邻接矩阵:用k表示两个结点之间相通的边数。


无向图邻接矩阵:用0、1表示两个结点是否有边。

邻接矩阵An的意义:以有向图为例,无向图的意义相同。


3.可达矩阵

可达矩阵研究的是两个结点是否可达,不判断有多少个可达的边数。


可达矩阵的计算方式
1.由定义根据图G写出可达矩阵,可达矩阵由0、1组成。
2.根据邻接矩阵A计算可达矩阵。
3.利用布尔运算和邻接矩阵计算可达矩阵。


十、欧拉图

1.无向图
欧拉回路:经过图G的所有边且经过一次的回路
欧拉路:经过图G的所有边且经过一次的通路(通路是边互不相同,路径是结点互不相同)。当半欧拉图的起点和终点相同时,就成了欧拉回路。
欧拉图:含有欧拉回路的图。
半欧拉图:有欧拉路而无欧拉回路的图。

2.欧拉图的判定定理
①.无向连通图G是欧拉,当且仅当G不含奇数度结点(G的所有结点度数为偶数)。

②.无向连通图G是半欧拉图,当且仅当G有两个奇数度的结点

3.有向图
有向欧拉回路:经过有向图图G的所有边且经过一次的回路
有向欧拉路:经过有向图图G的所有边且经过一次的通路
有向欧拉图:存在有向欧拉回路的图。连通的有向欧拉图一定是强连通的。
有向半欧拉图:有有向欧拉图而无有向欧拉回路的图。

4.有向欧拉图的判定定理

①.有向连通图D是欧拉图,当且仅当该图为连通图且D中每个结点的入度=出度

②.有向连通图D是半欧拉图,当且仅当该图为连通图且D中除两个结点u,v两点满足起始点u的出度=入度+1,结束点v的出度=入度-1。其余每个结点的入度=出度。

5.求欧拉图中的欧拉回路

十一、哈密顿图

1.基本概念
哈密顿路:给定无向图G中,通过图中每个结点一次而且仅一次的路径
哈密顿回路:给定无向图G中,通过图中每个结点一次而且仅一次的回路
哈密顿图:具有哈密顿回路的图。
半哈密顿图:有哈密顿路径而没有哈密顿回路的图。
哈密顿图和欧拉图联系:两者都是遍历问题,但是欧拉图考虑的是边,而哈密顿考虑的是结点。同时判定欧拉图具有充要条件。但是哈密顿图没有简单的充要条件,只有必要条件和充分条件。

  • 16
    点赞
  • 86
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值